Gang Han, Dongyan Yan, Zhe Sun, Jiyuan Fang, Xinyue Chang, Lucas Wilson, Yushi Liu
{"title":"用于单细胞 RNA-seq 分析的贝叶斯-频数混合推断框架。","authors":"Gang Han, Dongyan Yan, Zhe Sun, Jiyuan Fang, Xinyue Chang, Lucas Wilson, Yushi Liu","doi":"10.1186/s40246-024-00638-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Single cell RNA sequencing technology (scRNA-seq) has been proven useful in understanding cell-specific disease mechanisms. However, identifying genes of interest remains a key challenge. Pseudo-bulk methods that pool scRNA-seq counts in the same biological replicates have been commonly used to identify differentially expressed genes. However, such methods may lack power due to the limited sample size of scRNA-seq datasets, which can be prohibitively expensive.</p><p><strong>Results: </strong>Motivated by this, we proposed to use the Bayesian-frequentist hybrid (BFH) framework to increase the power and we showed in simulated scenario, the proposed BFH would be an optimal method when compared with other popular single cell differential expression methods if both FDR and power were considered. As an example, the method was applied to an idiopathic pulmonary fibrosis (IPF) case study.</p><p><strong>Conclusion: </strong>In our IPF example, we demonstrated that with a proper informative prior, the BFH approach identified more genes of interest. Furthermore, these genes were reasonable based on the current knowledge of IPF. Thus, the BFH offers a unique and flexible framework for future scRNA-seq analyses.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian-frequentist hybrid inference framework for single cell RNA-seq analyses.\",\"authors\":\"Gang Han, Dongyan Yan, Zhe Sun, Jiyuan Fang, Xinyue Chang, Lucas Wilson, Yushi Liu\",\"doi\":\"10.1186/s40246-024-00638-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Single cell RNA sequencing technology (scRNA-seq) has been proven useful in understanding cell-specific disease mechanisms. However, identifying genes of interest remains a key challenge. Pseudo-bulk methods that pool scRNA-seq counts in the same biological replicates have been commonly used to identify differentially expressed genes. However, such methods may lack power due to the limited sample size of scRNA-seq datasets, which can be prohibitively expensive.</p><p><strong>Results: </strong>Motivated by this, we proposed to use the Bayesian-frequentist hybrid (BFH) framework to increase the power and we showed in simulated scenario, the proposed BFH would be an optimal method when compared with other popular single cell differential expression methods if both FDR and power were considered. As an example, the method was applied to an idiopathic pulmonary fibrosis (IPF) case study.</p><p><strong>Conclusion: </strong>In our IPF example, we demonstrated that with a proper informative prior, the BFH approach identified more genes of interest. Furthermore, these genes were reasonable based on the current knowledge of IPF. Thus, the BFH offers a unique and flexible framework for future scRNA-seq analyses.</p>\",\"PeriodicalId\":13183,\"journal\":{\"name\":\"Human Genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Genomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40246-024-00638-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40246-024-00638-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Bayesian-frequentist hybrid inference framework for single cell RNA-seq analyses.
Background: Single cell RNA sequencing technology (scRNA-seq) has been proven useful in understanding cell-specific disease mechanisms. However, identifying genes of interest remains a key challenge. Pseudo-bulk methods that pool scRNA-seq counts in the same biological replicates have been commonly used to identify differentially expressed genes. However, such methods may lack power due to the limited sample size of scRNA-seq datasets, which can be prohibitively expensive.
Results: Motivated by this, we proposed to use the Bayesian-frequentist hybrid (BFH) framework to increase the power and we showed in simulated scenario, the proposed BFH would be an optimal method when compared with other popular single cell differential expression methods if both FDR and power were considered. As an example, the method was applied to an idiopathic pulmonary fibrosis (IPF) case study.
Conclusion: In our IPF example, we demonstrated that with a proper informative prior, the BFH approach identified more genes of interest. Furthermore, these genes were reasonable based on the current knowledge of IPF. Thus, the BFH offers a unique and flexible framework for future scRNA-seq analyses.
期刊介绍:
Human Genomics is a peer-reviewed, open access, online journal that focuses on the application of genomic analysis in all aspects of human health and disease, as well as genomic analysis of drug efficacy and safety, and comparative genomics.
Topics covered by the journal include, but are not limited to: pharmacogenomics, genome-wide association studies, genome-wide sequencing, exome sequencing, next-generation deep-sequencing, functional genomics, epigenomics, translational genomics, expression profiling, proteomics, bioinformatics, animal models, statistical genetics, genetic epidemiology, human population genetics and comparative genomics.