Zhen Qiu, Biao Qi, Lu Li, Jiahui Cui, Min Liu, Zhongyuan Xia
{"title":"激活 Klotho/SIRT1 信号通路可减轻糖尿病大鼠心肌缺血再灌注损伤。","authors":"Zhen Qiu, Biao Qi, Lu Li, Jiahui Cui, Min Liu, Zhongyuan Xia","doi":"10.1097/SHK.0000000000002418","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Diabetes and myocardial ischemia reperfusion (MIR) injury are characterized by oxidative stress, inflammation, autophagy disorders, and cardiac contractile dysfunction. Klotho and SIRT1 regulate the level of oxidative stress to participate in the regulation of many physiological functions such as cell survival, aging, apoptosis, autophagy, mitochondrial biogenesis, and inflammation. We hypothesized that the activation of Klotho/SIRT1 signaling pathway could attenuate MIR in diabetic rats. Type 1 diabetes and MIR injury model were established to examine this hypothesis in vivo . Primary rat cardiomyocytes and H9c2 cells were exposed to high glucose conditions and hypoxia/reoxygenation (H/R) insult in vitro . Hemodynamic parameters of heart function, myocardial infarct size, oxidative stress, markers of MIR injury or cell viability, and the mRNA and protein expression of Klotho and SIRT1 were measured. There was lower expression of Klotho and SIRT1 in diabetic MIR hearts than in nondiabetic rats, as well as significantly increased oxidative stress levels and decreased autophagy levels. Recombinant Klotho (rKlotho) protein and the SIRT1 agonist SRT1720 could significantly attenuate MIR injury in diabetes by activating Klotho/SIRT1 signaling pathway to reduce oxidative stress and restore autophagy levels. These findings suggest that the Klotho/SIRT1 pathway plays an important role in MIR injury in diabetic rats, and rKlotho protein and agonist SRT1720 have therapeutic potential for alleviating diabetic myocardial IR injury by activating Klotho/SIRT1 to reduce oxidative stress and restore autophagy levels.</p>","PeriodicalId":21667,"journal":{"name":"SHOCK","volume":" ","pages":"447-456"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ACTIVATION OF KLOTHO/SIRT1 SIGNALING PATHWAY ATTENUATES MYOCARDIAL ISCHEMIA REPERFUSION INJURY IN DIABETIC RATS.\",\"authors\":\"Zhen Qiu, Biao Qi, Lu Li, Jiahui Cui, Min Liu, Zhongyuan Xia\",\"doi\":\"10.1097/SHK.0000000000002418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Diabetes and myocardial ischemia reperfusion (MIR) injury are characterized by oxidative stress, inflammation, autophagy disorders, and cardiac contractile dysfunction. Klotho and SIRT1 regulate the level of oxidative stress to participate in the regulation of many physiological functions such as cell survival, aging, apoptosis, autophagy, mitochondrial biogenesis, and inflammation. We hypothesized that the activation of Klotho/SIRT1 signaling pathway could attenuate MIR in diabetic rats. Type 1 diabetes and MIR injury model were established to examine this hypothesis in vivo . Primary rat cardiomyocytes and H9c2 cells were exposed to high glucose conditions and hypoxia/reoxygenation (H/R) insult in vitro . Hemodynamic parameters of heart function, myocardial infarct size, oxidative stress, markers of MIR injury or cell viability, and the mRNA and protein expression of Klotho and SIRT1 were measured. There was lower expression of Klotho and SIRT1 in diabetic MIR hearts than in nondiabetic rats, as well as significantly increased oxidative stress levels and decreased autophagy levels. Recombinant Klotho (rKlotho) protein and the SIRT1 agonist SRT1720 could significantly attenuate MIR injury in diabetes by activating Klotho/SIRT1 signaling pathway to reduce oxidative stress and restore autophagy levels. These findings suggest that the Klotho/SIRT1 pathway plays an important role in MIR injury in diabetic rats, and rKlotho protein and agonist SRT1720 have therapeutic potential for alleviating diabetic myocardial IR injury by activating Klotho/SIRT1 to reduce oxidative stress and restore autophagy levels.</p>\",\"PeriodicalId\":21667,\"journal\":{\"name\":\"SHOCK\",\"volume\":\" \",\"pages\":\"447-456\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SHOCK\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/SHK.0000000000002418\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SHOCK","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/SHK.0000000000002418","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
ACTIVATION OF KLOTHO/SIRT1 SIGNALING PATHWAY ATTENUATES MYOCARDIAL ISCHEMIA REPERFUSION INJURY IN DIABETIC RATS.
Abstract: Diabetes and myocardial ischemia reperfusion (MIR) injury are characterized by oxidative stress, inflammation, autophagy disorders, and cardiac contractile dysfunction. Klotho and SIRT1 regulate the level of oxidative stress to participate in the regulation of many physiological functions such as cell survival, aging, apoptosis, autophagy, mitochondrial biogenesis, and inflammation. We hypothesized that the activation of Klotho/SIRT1 signaling pathway could attenuate MIR in diabetic rats. Type 1 diabetes and MIR injury model were established to examine this hypothesis in vivo . Primary rat cardiomyocytes and H9c2 cells were exposed to high glucose conditions and hypoxia/reoxygenation (H/R) insult in vitro . Hemodynamic parameters of heart function, myocardial infarct size, oxidative stress, markers of MIR injury or cell viability, and the mRNA and protein expression of Klotho and SIRT1 were measured. There was lower expression of Klotho and SIRT1 in diabetic MIR hearts than in nondiabetic rats, as well as significantly increased oxidative stress levels and decreased autophagy levels. Recombinant Klotho (rKlotho) protein and the SIRT1 agonist SRT1720 could significantly attenuate MIR injury in diabetes by activating Klotho/SIRT1 signaling pathway to reduce oxidative stress and restore autophagy levels. These findings suggest that the Klotho/SIRT1 pathway plays an important role in MIR injury in diabetic rats, and rKlotho protein and agonist SRT1720 have therapeutic potential for alleviating diabetic myocardial IR injury by activating Klotho/SIRT1 to reduce oxidative stress and restore autophagy levels.
期刊介绍:
SHOCK®: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches includes studies of novel therapeutic approaches, such as immunomodulation, gene therapy, nutrition, and others. The mission of the Journal is to foster and promote multidisciplinary studies, both experimental and clinical in nature, that critically examine the etiology, mechanisms and novel therapeutics of shock-related pathophysiological conditions. Its purpose is to excel as a vehicle for timely publication in the areas of basic and clinical studies of shock, trauma, sepsis, inflammation, ischemia, and related pathobiological states, with particular emphasis on the biologic mechanisms that determine the response to such injury. Making such information available will ultimately facilitate improved care of the traumatized or septic individual.