{"title":"劫持自噬以感染黄病毒","authors":"Ming-Hui Song , Yan Sun , Xiao-Bo Qiu","doi":"10.1016/j.virusres.2024.199422","DOIUrl":null,"url":null,"abstract":"<div><p>Autophagy is a lysosomal degradative pathway, which regulates the homeostasis of eukaryotic cells. This pathway can degrade misfolded or aggregated proteins, clear damaged organelles, and eliminate intracellular pathogens, including viruses, bacteria, and parasites. But, not all types of viruses are eliminated by autophagy. Flaviviruses (e.g., Yellow fever, Japanese encephalitis, Hepatitis C, Dengue, Zika, and West Nile viruses) are single-stranded and enveloped RNA viruses, and transmitted to humans primarily through the bites of arthropods, leading to severe and widespread illnesses. Like the coronavirus SARS-CoV-II, flaviviruses hijack autophagy for their infection and escape from host immune clearance. Thus, it is possible to control these viral infections by inhibiting autophagy. In this review, we summarize recent research progresses on hijacking of autophagy by flaviviruses and discuss the feasibility of antiviral therapies using autophagy inhibitors.</p></div>","PeriodicalId":23483,"journal":{"name":"Virus research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168170224001151/pdfft?md5=7c7fec0907120372f24b5facb5085405&pid=1-s2.0-S0168170224001151-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hijacking autophagy for infection by flaviviruses\",\"authors\":\"Ming-Hui Song , Yan Sun , Xiao-Bo Qiu\",\"doi\":\"10.1016/j.virusres.2024.199422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Autophagy is a lysosomal degradative pathway, which regulates the homeostasis of eukaryotic cells. This pathway can degrade misfolded or aggregated proteins, clear damaged organelles, and eliminate intracellular pathogens, including viruses, bacteria, and parasites. But, not all types of viruses are eliminated by autophagy. Flaviviruses (e.g., Yellow fever, Japanese encephalitis, Hepatitis C, Dengue, Zika, and West Nile viruses) are single-stranded and enveloped RNA viruses, and transmitted to humans primarily through the bites of arthropods, leading to severe and widespread illnesses. Like the coronavirus SARS-CoV-II, flaviviruses hijack autophagy for their infection and escape from host immune clearance. Thus, it is possible to control these viral infections by inhibiting autophagy. In this review, we summarize recent research progresses on hijacking of autophagy by flaviviruses and discuss the feasibility of antiviral therapies using autophagy inhibitors.</p></div>\",\"PeriodicalId\":23483,\"journal\":{\"name\":\"Virus research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168170224001151/pdfft?md5=7c7fec0907120372f24b5facb5085405&pid=1-s2.0-S0168170224001151-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virus research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168170224001151\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168170224001151","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
Autophagy is a lysosomal degradative pathway, which regulates the homeostasis of eukaryotic cells. This pathway can degrade misfolded or aggregated proteins, clear damaged organelles, and eliminate intracellular pathogens, including viruses, bacteria, and parasites. But, not all types of viruses are eliminated by autophagy. Flaviviruses (e.g., Yellow fever, Japanese encephalitis, Hepatitis C, Dengue, Zika, and West Nile viruses) are single-stranded and enveloped RNA viruses, and transmitted to humans primarily through the bites of arthropods, leading to severe and widespread illnesses. Like the coronavirus SARS-CoV-II, flaviviruses hijack autophagy for their infection and escape from host immune clearance. Thus, it is possible to control these viral infections by inhibiting autophagy. In this review, we summarize recent research progresses on hijacking of autophagy by flaviviruses and discuss the feasibility of antiviral therapies using autophagy inhibitors.
期刊介绍:
Virus Research provides a means of fast publication for original papers on fundamental research in virology. Contributions on new developments concerning virus structure, replication, pathogenesis and evolution are encouraged. These include reports describing virus morphology, the function and antigenic analysis of virus structural components, virus genome structure and expression, analysis on virus replication processes, virus evolution in connection with antiviral interventions, effects of viruses on their host cells, particularly on the immune system, and the pathogenesis of virus infections, including oncogene activation and transduction.