MPformer:基于变压器的土遗址气候预测模型

IF 6.6 1区 计算机科学 Q1 Multidisciplinary Tsinghua Science and Technology Pub Date : 2024-03-03 DOI:10.26599/TST.2024.9010035
Guodong Xu;Hai Wang;Shuo Ji;Yuhui Ma;Yi Feng
{"title":"MPformer:基于变压器的土遗址气候预测模型","authors":"Guodong Xu;Hai Wang;Shuo Ji;Yuhui Ma;Yi Feng","doi":"10.26599/TST.2024.9010035","DOIUrl":null,"url":null,"abstract":"Earthen ruins contain rich historical value. Affected by wind speed, temperature, and other factors, their survival conditions are not optimistic. Time series prediction provides more information for ruins protection. This work includes two challenges: (1) The ruin is located in an open environment, causing complex nonlinear temporal patterns. Furthermore, the usual wind speed monitoring requires the 10 meters observation height to reduce the influence of terrain. However, in order to monitor wind speed around the ruin, we have to set 4.5 meters observation height according to the ruin, resulting in a non-periodic and oscillating temporal pattern of wind speed; (2) The ruin is located in the arid and uninhabited region of northwest China, which results in accelerating aging of equipment and difficulty in maintenance. It significantly amplifies the device error rate, leading to duplication, missing, and outliers in datasets. To address these challenges, we designed a complete preprocessing and a Transformer-based multi-channel patch model. Experimental results on four datasets that we collected show that our model outperforms the others. Ruins climate prediction model can timely and effectively predict the abnormal state of the environment of the ruins. This provides effective data support and decision-making for ruins conservation, and exploring the relationship between the environmental conditions and the living state of the earthen ruins.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"29 6","pages":"1829-1838"},"PeriodicalIF":6.6000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520028","citationCount":"0","resultStr":"{\"title\":\"MPformer: A Transformer-Based Model for Earthen Ruins Climate Prediction\",\"authors\":\"Guodong Xu;Hai Wang;Shuo Ji;Yuhui Ma;Yi Feng\",\"doi\":\"10.26599/TST.2024.9010035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earthen ruins contain rich historical value. Affected by wind speed, temperature, and other factors, their survival conditions are not optimistic. Time series prediction provides more information for ruins protection. This work includes two challenges: (1) The ruin is located in an open environment, causing complex nonlinear temporal patterns. Furthermore, the usual wind speed monitoring requires the 10 meters observation height to reduce the influence of terrain. However, in order to monitor wind speed around the ruin, we have to set 4.5 meters observation height according to the ruin, resulting in a non-periodic and oscillating temporal pattern of wind speed; (2) The ruin is located in the arid and uninhabited region of northwest China, which results in accelerating aging of equipment and difficulty in maintenance. It significantly amplifies the device error rate, leading to duplication, missing, and outliers in datasets. To address these challenges, we designed a complete preprocessing and a Transformer-based multi-channel patch model. Experimental results on four datasets that we collected show that our model outperforms the others. Ruins climate prediction model can timely and effectively predict the abnormal state of the environment of the ruins. This provides effective data support and decision-making for ruins conservation, and exploring the relationship between the environmental conditions and the living state of the earthen ruins.\",\"PeriodicalId\":48690,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":\"29 6\",\"pages\":\"1829-1838\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520028\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10520028/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10520028/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

土遗址蕴含着丰富的历史价值。受风速、温度等因素的影响,其生存条件不容乐观。时间序列预测为遗址保护提供了更多信息。这项工作包括两个挑战:(1) 遗址位于开放环境中,会造成复杂的非线性时间模式。此外,通常的风速监测需要 10 米的观测高度,以减少地形的影响。然而,为了监测遗址周围的风速,我们必须根据遗址设置 4.5 米的观测高度,这就造成了风速的非周期性和振荡时态;(2) 遗址位于中国西北干旱无人区,设备老化加速,维护困难。这大大增加了设备的错误率,导致数据集出现重复、缺失和异常值。为了应对这些挑战,我们设计了一套完整的预处理和基于变压器的多通道补丁模型。在我们收集的四个数据集上的实验结果表明,我们的模型优于其他模型。遗址气候预测模型能够及时有效地预测遗址环境的异常状态。这为遗址保护、探索环境条件与土遗址生存状态之间的关系提供了有效的数据支持和决策依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MPformer: A Transformer-Based Model for Earthen Ruins Climate Prediction
Earthen ruins contain rich historical value. Affected by wind speed, temperature, and other factors, their survival conditions are not optimistic. Time series prediction provides more information for ruins protection. This work includes two challenges: (1) The ruin is located in an open environment, causing complex nonlinear temporal patterns. Furthermore, the usual wind speed monitoring requires the 10 meters observation height to reduce the influence of terrain. However, in order to monitor wind speed around the ruin, we have to set 4.5 meters observation height according to the ruin, resulting in a non-periodic and oscillating temporal pattern of wind speed; (2) The ruin is located in the arid and uninhabited region of northwest China, which results in accelerating aging of equipment and difficulty in maintenance. It significantly amplifies the device error rate, leading to duplication, missing, and outliers in datasets. To address these challenges, we designed a complete preprocessing and a Transformer-based multi-channel patch model. Experimental results on four datasets that we collected show that our model outperforms the others. Ruins climate prediction model can timely and effectively predict the abnormal state of the environment of the ruins. This provides effective data support and decision-making for ruins conservation, and exploring the relationship between the environmental conditions and the living state of the earthen ruins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
期刊最新文献
Contents Front Cover LP-Rounding Based Algorithm for Capacitated Uniform Facility Location Problem with Soft Penalties A P4-Based Approach to Traffic Isolation and Bandwidth Management for 5G Network Slicing Quantum-Inspired Sensitive Data Measurement and Secure Transmission in 5G-Enabled Healthcare Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1