{"title":"乌索万、赫鲁戈夫和五细胞的 ZKP 协议","authors":"Daiki Miyahara;Léo Robert;Pascal Lafourcade;Takaaki Mizuki","doi":"10.26599/TST.2023.9010153","DOIUrl":null,"url":null,"abstract":"A Zero-Knowledge Proof (ZKP) protocol allows a participant to prove the knowledge of some secret without revealing any information about it. While such protocols are typically executed by computers, there exists a line of research proposing physical instances of ZKP protocols. Up to now, many card-based ZKP protocols for pen-and-pencil puzzles, like Sudoku, have been designed. Those games, mostly edited by Nikoli, have simple rules, yet designing them in card-based ZKP protocols is non-trivial. In this work, we propose a card-based ZKP protocol for Usowan, a Nikoli game. In Usowan, for each room of a puzzle instance, there is exactly one piece of false information. The goal of the game is to detect this wrong data amongst the correct data and also to satisfy the other rules. Designing a card-based ZKP protocol to deal with the property of detecting a liar has never been done. In some sense, we propose a physical ZKP for hiding of a liar. This work extends a previous paper appearing in Ref. [1]. In this extension, we propose two other protocols, for Herugolf and Five Cells. The puzzles are specifically chosen because each of those three puzzles shares a common constraint, connectivity. However, showing the connected configuration cannot be done with generic approach and brings new construction to the existing connectivity ZKP protocol. Indeed, in Herugolf, the connectivity is handled with a given length of cell which is decremental (i.e., the length of each connected cell decreases by one at each step). For Five Cells, there is an additional step in the setup allowing to encode all the information needed to ensure a valid ZKP protocol.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"29 6","pages":"1651-1666"},"PeriodicalIF":6.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566027","citationCount":"0","resultStr":"{\"title\":\"ZKP Protocols for Usowan, Herugolf, and Five Cells\",\"authors\":\"Daiki Miyahara;Léo Robert;Pascal Lafourcade;Takaaki Mizuki\",\"doi\":\"10.26599/TST.2023.9010153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Zero-Knowledge Proof (ZKP) protocol allows a participant to prove the knowledge of some secret without revealing any information about it. While such protocols are typically executed by computers, there exists a line of research proposing physical instances of ZKP protocols. Up to now, many card-based ZKP protocols for pen-and-pencil puzzles, like Sudoku, have been designed. Those games, mostly edited by Nikoli, have simple rules, yet designing them in card-based ZKP protocols is non-trivial. In this work, we propose a card-based ZKP protocol for Usowan, a Nikoli game. In Usowan, for each room of a puzzle instance, there is exactly one piece of false information. The goal of the game is to detect this wrong data amongst the correct data and also to satisfy the other rules. Designing a card-based ZKP protocol to deal with the property of detecting a liar has never been done. In some sense, we propose a physical ZKP for hiding of a liar. This work extends a previous paper appearing in Ref. [1]. In this extension, we propose two other protocols, for Herugolf and Five Cells. The puzzles are specifically chosen because each of those three puzzles shares a common constraint, connectivity. However, showing the connected configuration cannot be done with generic approach and brings new construction to the existing connectivity ZKP protocol. Indeed, in Herugolf, the connectivity is handled with a given length of cell which is decremental (i.e., the length of each connected cell decreases by one at each step). For Five Cells, there is an additional step in the setup allowing to encode all the information needed to ensure a valid ZKP protocol.\",\"PeriodicalId\":48690,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":\"29 6\",\"pages\":\"1651-1666\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566027\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10566027/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10566027/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
ZKP Protocols for Usowan, Herugolf, and Five Cells
A Zero-Knowledge Proof (ZKP) protocol allows a participant to prove the knowledge of some secret without revealing any information about it. While such protocols are typically executed by computers, there exists a line of research proposing physical instances of ZKP protocols. Up to now, many card-based ZKP protocols for pen-and-pencil puzzles, like Sudoku, have been designed. Those games, mostly edited by Nikoli, have simple rules, yet designing them in card-based ZKP protocols is non-trivial. In this work, we propose a card-based ZKP protocol for Usowan, a Nikoli game. In Usowan, for each room of a puzzle instance, there is exactly one piece of false information. The goal of the game is to detect this wrong data amongst the correct data and also to satisfy the other rules. Designing a card-based ZKP protocol to deal with the property of detecting a liar has never been done. In some sense, we propose a physical ZKP for hiding of a liar. This work extends a previous paper appearing in Ref. [1]. In this extension, we propose two other protocols, for Herugolf and Five Cells. The puzzles are specifically chosen because each of those three puzzles shares a common constraint, connectivity. However, showing the connected configuration cannot be done with generic approach and brings new construction to the existing connectivity ZKP protocol. Indeed, in Herugolf, the connectivity is handled with a given length of cell which is decremental (i.e., the length of each connected cell decreases by one at each step). For Five Cells, there is an additional step in the setup allowing to encode all the information needed to ensure a valid ZKP protocol.
期刊介绍:
Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.