Fabio De Sousa Ribeiro, Kevin Duarte, Miles Everett, Georgios Leontidis, Mubarak Shah
{"title":"利用胶囊网络进行以对象为中心的学习:调查","authors":"Fabio De Sousa Ribeiro, Kevin Duarte, Miles Everett, Georgios Leontidis, Mubarak Shah","doi":"10.1145/3674500","DOIUrl":null,"url":null,"abstract":"<p>Capsule networks emerged as a promising alternative to convolutional neural networks for learning object-centric representations. The idea is to explicitly model part-whole hierarchies by using groups of neurons called <i>capsules</i> to encode visual entities, then learn the relationships between these entities dynamically from data. However, a major hurdle for capsule network research has been the lack of a reliable point of reference for understanding their foundational ideas and motivations. This survey provides a comprehensive and critical overview of capsule networks which aims to serve as a main point of reference going forward. To that end, we introduce the fundamental concepts and motivations behind capsule networks, such as <i>equivariant inference</i>. We then cover various technical advances in capsule routing algorithms as well as alternative geometric and generative formulations. We provide a detailed explanation of how capsule networks relate to the attention mechanism in Transformers and uncover non-trivial conceptual similarities between them in the context of object-centric representation learning. We also review the extensive applications of capsule networks in computer vision, video and motion, graph representation learning, natural language processing, medical imaging, and many others. To conclude, we provide an in-depth discussion highlighting promising directions for future work.</p>","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"75 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Object-Centric Learning with Capsule Networks: A Survey\",\"authors\":\"Fabio De Sousa Ribeiro, Kevin Duarte, Miles Everett, Georgios Leontidis, Mubarak Shah\",\"doi\":\"10.1145/3674500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Capsule networks emerged as a promising alternative to convolutional neural networks for learning object-centric representations. The idea is to explicitly model part-whole hierarchies by using groups of neurons called <i>capsules</i> to encode visual entities, then learn the relationships between these entities dynamically from data. However, a major hurdle for capsule network research has been the lack of a reliable point of reference for understanding their foundational ideas and motivations. This survey provides a comprehensive and critical overview of capsule networks which aims to serve as a main point of reference going forward. To that end, we introduce the fundamental concepts and motivations behind capsule networks, such as <i>equivariant inference</i>. We then cover various technical advances in capsule routing algorithms as well as alternative geometric and generative formulations. We provide a detailed explanation of how capsule networks relate to the attention mechanism in Transformers and uncover non-trivial conceptual similarities between them in the context of object-centric representation learning. We also review the extensive applications of capsule networks in computer vision, video and motion, graph representation learning, natural language processing, medical imaging, and many others. To conclude, we provide an in-depth discussion highlighting promising directions for future work.</p>\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3674500\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3674500","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Object-Centric Learning with Capsule Networks: A Survey
Capsule networks emerged as a promising alternative to convolutional neural networks for learning object-centric representations. The idea is to explicitly model part-whole hierarchies by using groups of neurons called capsules to encode visual entities, then learn the relationships between these entities dynamically from data. However, a major hurdle for capsule network research has been the lack of a reliable point of reference for understanding their foundational ideas and motivations. This survey provides a comprehensive and critical overview of capsule networks which aims to serve as a main point of reference going forward. To that end, we introduce the fundamental concepts and motivations behind capsule networks, such as equivariant inference. We then cover various technical advances in capsule routing algorithms as well as alternative geometric and generative formulations. We provide a detailed explanation of how capsule networks relate to the attention mechanism in Transformers and uncover non-trivial conceptual similarities between them in the context of object-centric representation learning. We also review the extensive applications of capsule networks in computer vision, video and motion, graph representation learning, natural language processing, medical imaging, and many others. To conclude, we provide an in-depth discussion highlighting promising directions for future work.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.