Rosemary J. Jackson, Bradley T. Hyman, Alberto Serrano-Pozo
{"title":"APOE 在阿尔茨海默病中的多方面作用","authors":"Rosemary J. Jackson, Bradley T. Hyman, Alberto Serrano-Pozo","doi":"10.1038/s41582-024-00988-2","DOIUrl":null,"url":null,"abstract":"For the past three decades, apolipoprotein E (APOE) has been known as the single greatest genetic modulator of sporadic Alzheimer disease (AD) risk, influencing both the average age of onset and the lifetime risk of developing AD. The APOEε4 allele significantly increases AD risk, whereas the ε2 allele is protective relative to the most common ε3 allele. However, large differences in effect size exist across ethnoracial groups that are likely to depend on both global genetic ancestry and local genetic ancestry, as well as gene–environment interactions. Although early studies linked APOE to amyloid-β — one of the two culprit aggregation-prone proteins that define AD — in the past decade, mounting work has associated APOE with other neurodegenerative proteinopathies and broader ageing-related brain changes, such as neuroinflammation, energy metabolism failure, loss of myelin integrity and increased blood–brain barrier permeability, with potential implications for longevity and resilience to pathological protein aggregates. Novel mouse models and other technological advances have also enabled a number of therapeutic approaches aimed at either attenuating the APOEε4-linked increased AD risk or enhancing the APOEε2-linked AD protection. This Review summarizes this progress and highlights areas for future research towards the development of APOE-directed therapeutics. Apolipoprotein E (APOE) is the greatest genetic modulator of sporadic Alzheimer disease risk. This Review provides a comprehensive update on our current knowledge of the genetics of APOE and its role in Alzheimer and other neurodegenerative diseases, and summarizes emerging APOE-targeted therapies designed to prevent or slow down Alzheimer disease.","PeriodicalId":19085,"journal":{"name":"Nature Reviews Neurology","volume":"20 8","pages":"457-474"},"PeriodicalIF":28.2000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifaceted roles of APOE in Alzheimer disease\",\"authors\":\"Rosemary J. Jackson, Bradley T. Hyman, Alberto Serrano-Pozo\",\"doi\":\"10.1038/s41582-024-00988-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the past three decades, apolipoprotein E (APOE) has been known as the single greatest genetic modulator of sporadic Alzheimer disease (AD) risk, influencing both the average age of onset and the lifetime risk of developing AD. The APOEε4 allele significantly increases AD risk, whereas the ε2 allele is protective relative to the most common ε3 allele. However, large differences in effect size exist across ethnoracial groups that are likely to depend on both global genetic ancestry and local genetic ancestry, as well as gene–environment interactions. Although early studies linked APOE to amyloid-β — one of the two culprit aggregation-prone proteins that define AD — in the past decade, mounting work has associated APOE with other neurodegenerative proteinopathies and broader ageing-related brain changes, such as neuroinflammation, energy metabolism failure, loss of myelin integrity and increased blood–brain barrier permeability, with potential implications for longevity and resilience to pathological protein aggregates. Novel mouse models and other technological advances have also enabled a number of therapeutic approaches aimed at either attenuating the APOEε4-linked increased AD risk or enhancing the APOEε2-linked AD protection. This Review summarizes this progress and highlights areas for future research towards the development of APOE-directed therapeutics. Apolipoprotein E (APOE) is the greatest genetic modulator of sporadic Alzheimer disease risk. This Review provides a comprehensive update on our current knowledge of the genetics of APOE and its role in Alzheimer and other neurodegenerative diseases, and summarizes emerging APOE-targeted therapies designed to prevent or slow down Alzheimer disease.\",\"PeriodicalId\":19085,\"journal\":{\"name\":\"Nature Reviews Neurology\",\"volume\":\"20 8\",\"pages\":\"457-474\"},\"PeriodicalIF\":28.2000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41582-024-00988-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41582-024-00988-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
For the past three decades, apolipoprotein E (APOE) has been known as the single greatest genetic modulator of sporadic Alzheimer disease (AD) risk, influencing both the average age of onset and the lifetime risk of developing AD. The APOEε4 allele significantly increases AD risk, whereas the ε2 allele is protective relative to the most common ε3 allele. However, large differences in effect size exist across ethnoracial groups that are likely to depend on both global genetic ancestry and local genetic ancestry, as well as gene–environment interactions. Although early studies linked APOE to amyloid-β — one of the two culprit aggregation-prone proteins that define AD — in the past decade, mounting work has associated APOE with other neurodegenerative proteinopathies and broader ageing-related brain changes, such as neuroinflammation, energy metabolism failure, loss of myelin integrity and increased blood–brain barrier permeability, with potential implications for longevity and resilience to pathological protein aggregates. Novel mouse models and other technological advances have also enabled a number of therapeutic approaches aimed at either attenuating the APOEε4-linked increased AD risk or enhancing the APOEε2-linked AD protection. This Review summarizes this progress and highlights areas for future research towards the development of APOE-directed therapeutics. Apolipoprotein E (APOE) is the greatest genetic modulator of sporadic Alzheimer disease risk. This Review provides a comprehensive update on our current knowledge of the genetics of APOE and its role in Alzheimer and other neurodegenerative diseases, and summarizes emerging APOE-targeted therapies designed to prevent or slow down Alzheimer disease.
期刊介绍:
Nature Reviews Neurology aims to be the premier source of reviews and commentaries for the scientific and clinical communities we serve. We want to provide an unparalleled service to authors, referees, and readers, and we work hard to maximize the usefulness and impact of each article. The journal publishes Research Highlights, Comments, News & Views, Reviews, Consensus Statements, and Perspectives relevant to researchers and clinicians working in the field of neurology. Our broad scope ensures that the work we publish reaches the widest possible audience. Our articles are authoritative, accessible, and enhanced with clearly understandable figures, tables, and other display items. This page gives more detail about the aims and scope of the journal.