用于固态无阳极电池的氢化物基夹层

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-06-20 DOI:10.1021/acsenergylett.4c00704
Yonglin Huang, Yuxuan Zhang, Ruixin Wu, Bowen Shao, Ruihao Deng, Ratnottam Das and Fudong Han*, 
{"title":"用于固态无阳极电池的氢化物基夹层","authors":"Yonglin Huang,&nbsp;Yuxuan Zhang,&nbsp;Ruixin Wu,&nbsp;Bowen Shao,&nbsp;Ruihao Deng,&nbsp;Ratnottam Das and Fudong Han*,&nbsp;","doi":"10.1021/acsenergylett.4c00704","DOIUrl":null,"url":null,"abstract":"<p >Solid-state batteries (SSBs) are considered a promising approach to realizing an anode-free concept with high energy densities. However, the initial Coulombic efficiency (ICE) has remained insufficient for anode-free batteries using sulfide-based solid electrolytes (SEs). Herein, we incorporated a hydride-based interlayer, 3LiBH<sub>4</sub>-LiI (LBHI), between a typical sulfide SE, Li<sub>6</sub>PS<sub>5</sub>Cl, and the Cu current collector. By investigating the Li plating and stripping behaviors and the (electro)chemical stability between SEs and plated Li, we demonstrated that LBHI can effectively improve interfacial stability, leading to an ICE exceeding 94% in anode-free half cells. This interlayer also improves Coulombic efficiencies and specific capacities in anode-free full cells. Furthermore, the utilization of LBHI enables one to study Li plating behaviors without interference from interfacial (electro)chemical instabilities. The analysis of stack pressure evolution during electrochemical cycling reveals that soft shorting in SSBs arises from both dendrite formation and deformation, offering insights into further optimizing solid-state anode-free batteries.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydride-Based Interlayer for Solid-State Anode-Free Battery\",\"authors\":\"Yonglin Huang,&nbsp;Yuxuan Zhang,&nbsp;Ruixin Wu,&nbsp;Bowen Shao,&nbsp;Ruihao Deng,&nbsp;Ratnottam Das and Fudong Han*,&nbsp;\",\"doi\":\"10.1021/acsenergylett.4c00704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Solid-state batteries (SSBs) are considered a promising approach to realizing an anode-free concept with high energy densities. However, the initial Coulombic efficiency (ICE) has remained insufficient for anode-free batteries using sulfide-based solid electrolytes (SEs). Herein, we incorporated a hydride-based interlayer, 3LiBH<sub>4</sub>-LiI (LBHI), between a typical sulfide SE, Li<sub>6</sub>PS<sub>5</sub>Cl, and the Cu current collector. By investigating the Li plating and stripping behaviors and the (electro)chemical stability between SEs and plated Li, we demonstrated that LBHI can effectively improve interfacial stability, leading to an ICE exceeding 94% in anode-free half cells. This interlayer also improves Coulombic efficiencies and specific capacities in anode-free full cells. Furthermore, the utilization of LBHI enables one to study Li plating behaviors without interference from interfacial (electro)chemical instabilities. The analysis of stack pressure evolution during electrochemical cycling reveals that soft shorting in SSBs arises from both dendrite formation and deformation, offering insights into further optimizing solid-state anode-free batteries.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.4c00704\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c00704","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

固态电池(SSB)被认为是实现高能量密度无阳极概念的一种有前途的方法。然而,使用硫化物基固体电解质(SE)的无阳极电池的初始库仑效率(ICE)仍然不足。在此,我们在典型的硫化物 SE(Li6PS5Cl)和铜集流体之间加入了一层基于氢化物的中间层 3LiBH4-LiI(LBHI)。通过研究锂的电镀和剥离行为以及硫化物 SE 和电镀锂之间的(电)化学稳定性,我们证明 LBHI 可以有效提高界面稳定性,从而使无阳极半电池的 ICE 超过 94%。这种中间膜还能提高无阳极全电池的库仑效率和比容量。此外,利用 LBHI 可以研究锂的电镀行为,而不受界面(电)化学不稳定性的干扰。对电化学循环过程中堆栈压力演变的分析表明,SSBs 中的软短路现象既源于枝晶的形成,也源于变形,这为进一步优化固态无阳极电池提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydride-Based Interlayer for Solid-State Anode-Free Battery

Solid-state batteries (SSBs) are considered a promising approach to realizing an anode-free concept with high energy densities. However, the initial Coulombic efficiency (ICE) has remained insufficient for anode-free batteries using sulfide-based solid electrolytes (SEs). Herein, we incorporated a hydride-based interlayer, 3LiBH4-LiI (LBHI), between a typical sulfide SE, Li6PS5Cl, and the Cu current collector. By investigating the Li plating and stripping behaviors and the (electro)chemical stability between SEs and plated Li, we demonstrated that LBHI can effectively improve interfacial stability, leading to an ICE exceeding 94% in anode-free half cells. This interlayer also improves Coulombic efficiencies and specific capacities in anode-free full cells. Furthermore, the utilization of LBHI enables one to study Li plating behaviors without interference from interfacial (electro)chemical instabilities. The analysis of stack pressure evolution during electrochemical cycling reveals that soft shorting in SSBs arises from both dendrite formation and deformation, offering insights into further optimizing solid-state anode-free batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Digital Twin Battery Modeling and Simulations: A New Analysis and Design Tool for Rechargeable Batteries Generative Design and Experimental Validation of Non-Fullerene Acceptors for Photovoltaics Rational Third Component Choices Drive Enhanced Morphology and Efficiency in Ternary Blend Organic Solar Cells Origins of Nanoalloy Catalysts Degradation during Membrane Electrode Assembly Fabrication Correction to “Multicomponent Approach for Stable Methylammonium-Free Tin–Lead Perovskite Solar Cells”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1