揭示磷化镍-氧化铁核壳纳米催化剂在碱性介质中氧进化反应的结构演变

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Chemistry of Materials Pub Date : 2024-06-21 DOI:10.1021/acs.chemmater.4c00379
Ryan H. Manso, Jiyun Hong, Wei Wang, Prashant Acharya, Adam S. Hoffman, Xiao Tong, Feng Wang, Lauren F. Greenlee, Yimei Zhu, Simon R. Bare and Jingyi Chen*, 
{"title":"揭示磷化镍-氧化铁核壳纳米催化剂在碱性介质中氧进化反应的结构演变","authors":"Ryan H. Manso,&nbsp;Jiyun Hong,&nbsp;Wei Wang,&nbsp;Prashant Acharya,&nbsp;Adam S. Hoffman,&nbsp;Xiao Tong,&nbsp;Feng Wang,&nbsp;Lauren F. Greenlee,&nbsp;Yimei Zhu,&nbsp;Simon R. Bare and Jingyi Chen*,&nbsp;","doi":"10.1021/acs.chemmater.4c00379","DOIUrl":null,"url":null,"abstract":"<p >Metal phosphide-containing materials have emerged as a potential candidate of nonprecious metal-based catalysts for alkaline oxygen evolution reaction (OER). While it is known that metal phosphide undergoes structural evolution, considerable debate persists regarding the effects of dynamics on the surface activation and morphological stability of the catalysts. In this study, we synthesize NiP<sub><i>x</i></sub>-FeO<sub><i>x</i></sub> core–shell nanocatalysts with an amorphous NiP<sub><i>x</i></sub> core designed for enhanced OER activity. Using <i>ex situ</i> X-ray absorption spectroscopy, we elucidate the local structural changes as a function of the cyclic voltammetry cycles. Our studies suggest that the presence of corner-sharing octahedra in the FeO<sub><i>x</i></sub> shell improves structural rigidity through interlayer cross-linking, thereby inhibiting the diffusion of OH<sup>–</sup>/H<sub>2</sub>O. Thus, the FeO<sub><i>x</i></sub> shell preserves the amorphous NiP<sub><i>x</i></sub> core from rapid oxidation to Ni<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> and Ni(OH)<sub>2</sub>. On the other hand, the incorporation of Ni from the core into the FeO<sub><i>x</i></sub> shell facilitates absorption of hydroxide ions for OER. As a result, Ni/Fe(OH)<sub><i>x</i></sub> at the surface oxidizes to the active γ-(oxy)hydroxide phase under the applied potentials, promoting OER. This intriguing synergistic behavior holds significance as such a synthetic route involving the FeO<sub><i>x</i></sub> shell can be extended to other systems, enabling manipulation of surface adsorption and diffusion of hydroxide ions. These findings also demonstrate that nanomaterials with core–shell morphologies can be tuned to leverage the strength of each metallic component for improved electrochemical activities.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemmater.4c00379","citationCount":"0","resultStr":"{\"title\":\"Revealing Structural Evolution of Nickel Phosphide-Iron Oxide Core–Shell Nanocatalysts in Alkaline Medium for the Oxygen Evolution Reaction\",\"authors\":\"Ryan H. Manso,&nbsp;Jiyun Hong,&nbsp;Wei Wang,&nbsp;Prashant Acharya,&nbsp;Adam S. Hoffman,&nbsp;Xiao Tong,&nbsp;Feng Wang,&nbsp;Lauren F. Greenlee,&nbsp;Yimei Zhu,&nbsp;Simon R. Bare and Jingyi Chen*,&nbsp;\",\"doi\":\"10.1021/acs.chemmater.4c00379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Metal phosphide-containing materials have emerged as a potential candidate of nonprecious metal-based catalysts for alkaline oxygen evolution reaction (OER). While it is known that metal phosphide undergoes structural evolution, considerable debate persists regarding the effects of dynamics on the surface activation and morphological stability of the catalysts. In this study, we synthesize NiP<sub><i>x</i></sub>-FeO<sub><i>x</i></sub> core–shell nanocatalysts with an amorphous NiP<sub><i>x</i></sub> core designed for enhanced OER activity. Using <i>ex situ</i> X-ray absorption spectroscopy, we elucidate the local structural changes as a function of the cyclic voltammetry cycles. Our studies suggest that the presence of corner-sharing octahedra in the FeO<sub><i>x</i></sub> shell improves structural rigidity through interlayer cross-linking, thereby inhibiting the diffusion of OH<sup>–</sup>/H<sub>2</sub>O. Thus, the FeO<sub><i>x</i></sub> shell preserves the amorphous NiP<sub><i>x</i></sub> core from rapid oxidation to Ni<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> and Ni(OH)<sub>2</sub>. On the other hand, the incorporation of Ni from the core into the FeO<sub><i>x</i></sub> shell facilitates absorption of hydroxide ions for OER. As a result, Ni/Fe(OH)<sub><i>x</i></sub> at the surface oxidizes to the active γ-(oxy)hydroxide phase under the applied potentials, promoting OER. This intriguing synergistic behavior holds significance as such a synthetic route involving the FeO<sub><i>x</i></sub> shell can be extended to other systems, enabling manipulation of surface adsorption and diffusion of hydroxide ions. These findings also demonstrate that nanomaterials with core–shell morphologies can be tuned to leverage the strength of each metallic component for improved electrochemical activities.</p>\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.chemmater.4c00379\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c00379\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c00379","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

含磷化金属的材料已成为碱性氧进化反应(OER)非贵金属基催化剂的潜在候选材料。众所周知,金属磷化物会发生结构演化,但关于动力学对催化剂表面活化和形态稳定性的影响仍存在很大争议。在本研究中,我们合成了具有无定形 NiPx 内核的 NiPx-FeOx 核壳纳米催化剂,以增强 OER 活性。利用原位 X 射线吸收光谱,我们阐明了局部结构变化与循环伏安法周期的函数关系。我们的研究表明,FeOx 外壳中分角八面体的存在通过层间交联提高了结构的刚性,从而抑制了 OH-/H2O 的扩散。因此,FeOx 外壳可以保护无定形的 NiPx 内核不被快速氧化成 Ni3(PO4)2 和 Ni(OH)2。另一方面,内核中的 Ni 与氧化铁外壳的结合促进了氢氧根离子的吸收,从而实现 OER。因此,表面的 Ni/Fe(OH)x 在施加的电位下会氧化成活性的 γ-(氧)氢氧化物相,从而促进 OER。这种有趣的协同行为具有重要意义,因为这种涉及氧化铁外壳的合成路线可以扩展到其他系统,从而可以操纵氢氧根离子的表面吸附和扩散。这些发现还表明,可以对具有核壳形态的纳米材料进行调整,以利用每种金属成分的强度来提高电化学活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revealing Structural Evolution of Nickel Phosphide-Iron Oxide Core–Shell Nanocatalysts in Alkaline Medium for the Oxygen Evolution Reaction

Metal phosphide-containing materials have emerged as a potential candidate of nonprecious metal-based catalysts for alkaline oxygen evolution reaction (OER). While it is known that metal phosphide undergoes structural evolution, considerable debate persists regarding the effects of dynamics on the surface activation and morphological stability of the catalysts. In this study, we synthesize NiPx-FeOx core–shell nanocatalysts with an amorphous NiPx core designed for enhanced OER activity. Using ex situ X-ray absorption spectroscopy, we elucidate the local structural changes as a function of the cyclic voltammetry cycles. Our studies suggest that the presence of corner-sharing octahedra in the FeOx shell improves structural rigidity through interlayer cross-linking, thereby inhibiting the diffusion of OH/H2O. Thus, the FeOx shell preserves the amorphous NiPx core from rapid oxidation to Ni3(PO4)2 and Ni(OH)2. On the other hand, the incorporation of Ni from the core into the FeOx shell facilitates absorption of hydroxide ions for OER. As a result, Ni/Fe(OH)x at the surface oxidizes to the active γ-(oxy)hydroxide phase under the applied potentials, promoting OER. This intriguing synergistic behavior holds significance as such a synthetic route involving the FeOx shell can be extended to other systems, enabling manipulation of surface adsorption and diffusion of hydroxide ions. These findings also demonstrate that nanomaterials with core–shell morphologies can be tuned to leverage the strength of each metallic component for improved electrochemical activities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
期刊最新文献
Lanthanide Contraction Eliminates Disorder while Holding Robust Second Harmonic Generation in a Series of Polyiodates Unveiling Cellular Secrets: Illuminating Carbon Dot Lighthouses for Improved Mitochondrial Exploration Decoupling Interlayer Spacing and Cation Dipole on Exciton Binding Energy in Layered Halide Perovskites New Mn and V-rich Phosphate Fluoride Obtained by Topochemical Reaction for Na-ion Batteries Positive Electrode Br-Induced Suppression of Low-Temperature Phase Transitions in Mixed-Cation Mixed-Halide Perovskites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1