超越化学步骤:分枝杆菌乙酰转移酶中底物获取的作用

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-06-20 DOI:10.1021/acscatal.4c00812
Henrique F. Carvalho, Luuk Mestrom, Ulf Hanefeld and Jürgen Pleiss*, 
{"title":"超越化学步骤:分枝杆菌乙酰转移酶中底物获取的作用","authors":"Henrique F. Carvalho,&nbsp;Luuk Mestrom,&nbsp;Ulf Hanefeld and Jürgen Pleiss*,&nbsp;","doi":"10.1021/acscatal.4c00812","DOIUrl":null,"url":null,"abstract":"<p >Acyltransferase from <i>Mycobacterium smegmatis</i> is a versatile enzyme, which catalyzes the transesterification of esters in aqueous media due to a kinetic preference of the synthesis reaction over the thermodynamically favored hydrolysis reaction. In the active octamer, the active site is deeply buried and connected to the protein surface by long and hydrophobic substrate access channels. The role of the access channel in controlling catalytic activity and substrate specificity was investigated by molecular dynamics simulations and Markov-state models, and the thermodynamics and kinetics of binding of acyl donors, acceptors, and water were compared. Despite the hydrophobic nature of the substrate access channel, water is present in the channel and competes with the acyl acceptors for access to the active site. The binding free energy profiles in the access channel and the flux of butyl and benzyl alcohol and vinyl acetate were analyzed in the concentration range between 10 and 500 mM and compared to water. The flux showed a maximum at an alcohol concentration of 50–100 mM, in agreement with experimental observations. At the maximum, the flux of alcohol approaches 50% of the flux of water, which explains the high transesterification rate as compared to hydrolysis. The molecular origin of this effect is due to the accumulation of alcohol molecules along the access channel. Extensive molecular dynamics simulations and analysis of trajectories by a Markov-state model provided insights into the role of the access channel in activity and specificity by controlling access and binding of competing substrates.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond the Chemical Step: The Role of Substrate Access in Acyltransferase from Mycobacterium smegmatis\",\"authors\":\"Henrique F. Carvalho,&nbsp;Luuk Mestrom,&nbsp;Ulf Hanefeld and Jürgen Pleiss*,&nbsp;\",\"doi\":\"10.1021/acscatal.4c00812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Acyltransferase from <i>Mycobacterium smegmatis</i> is a versatile enzyme, which catalyzes the transesterification of esters in aqueous media due to a kinetic preference of the synthesis reaction over the thermodynamically favored hydrolysis reaction. In the active octamer, the active site is deeply buried and connected to the protein surface by long and hydrophobic substrate access channels. The role of the access channel in controlling catalytic activity and substrate specificity was investigated by molecular dynamics simulations and Markov-state models, and the thermodynamics and kinetics of binding of acyl donors, acceptors, and water were compared. Despite the hydrophobic nature of the substrate access channel, water is present in the channel and competes with the acyl acceptors for access to the active site. The binding free energy profiles in the access channel and the flux of butyl and benzyl alcohol and vinyl acetate were analyzed in the concentration range between 10 and 500 mM and compared to water. The flux showed a maximum at an alcohol concentration of 50–100 mM, in agreement with experimental observations. At the maximum, the flux of alcohol approaches 50% of the flux of water, which explains the high transesterification rate as compared to hydrolysis. The molecular origin of this effect is due to the accumulation of alcohol molecules along the access channel. Extensive molecular dynamics simulations and analysis of trajectories by a Markov-state model provided insights into the role of the access channel in activity and specificity by controlling access and binding of competing substrates.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.4c00812\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c00812","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

烟曲霉分枝杆菌中的酰基转移酶是一种多功能酶,它在水介质中催化酯类的酯化反应,这是因为在动力学上合成反应比热力学上的水解反应更优先。在活性八聚体中,活性位点被深埋,并通过长而疏水的底物通道与蛋白质表面相连。分子动力学模拟和马尔可夫状态模型研究了通道在控制催化活性和底物特异性方面的作用,并比较了酰基供体、受体和水结合的热力学和动力学。尽管底物通道具有疏水性,但通道中仍存在水,并与酰基受体竞争进入活性位点。在 10 至 500 mM 的浓度范围内,分析了进入通道的结合自由能曲线以及丁醇、苯甲醇和乙酸乙烯酯的通量,并与水进行了比较。通量在酒精浓度为 50-100 mM 时达到最大值,这与实验观察结果一致。在最大值时,酒精的通量接近水通量的 50%,这就解释了为什么酯交换率比水解率高。造成这种效应的分子原因是酒精分子沿着通路聚集。利用马尔可夫状态模型进行的大量分子动力学模拟和轨迹分析,使人们深入了解了通道通过控制竞争底物的进入和结合在活性和特异性方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Beyond the Chemical Step: The Role of Substrate Access in Acyltransferase from Mycobacterium smegmatis

Acyltransferase from Mycobacterium smegmatis is a versatile enzyme, which catalyzes the transesterification of esters in aqueous media due to a kinetic preference of the synthesis reaction over the thermodynamically favored hydrolysis reaction. In the active octamer, the active site is deeply buried and connected to the protein surface by long and hydrophobic substrate access channels. The role of the access channel in controlling catalytic activity and substrate specificity was investigated by molecular dynamics simulations and Markov-state models, and the thermodynamics and kinetics of binding of acyl donors, acceptors, and water were compared. Despite the hydrophobic nature of the substrate access channel, water is present in the channel and competes with the acyl acceptors for access to the active site. The binding free energy profiles in the access channel and the flux of butyl and benzyl alcohol and vinyl acetate were analyzed in the concentration range between 10 and 500 mM and compared to water. The flux showed a maximum at an alcohol concentration of 50–100 mM, in agreement with experimental observations. At the maximum, the flux of alcohol approaches 50% of the flux of water, which explains the high transesterification rate as compared to hydrolysis. The molecular origin of this effect is due to the accumulation of alcohol molecules along the access channel. Extensive molecular dynamics simulations and analysis of trajectories by a Markov-state model provided insights into the role of the access channel in activity and specificity by controlling access and binding of competing substrates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Investigation of Ethane Dehydrogenation and Hydrogenolysis on Pt(111), Pt(211), and Pt(100): Bayesian Quantification and Correction of DFT-Based Enthalpic and Entropic Uncertainties Site-Selective Pyridine Carbamoylation Enabled by Consecutive Photoinduced Electron Transfer Asymmetric Hydrogenation of Naphthalenes with Molybdenum Catalysts: Ligand Design Improves Chemoselectivity A Highly Stereoselective and Efficient Biocatalytic Synthesis of Chiral Syn-Aryl β-Hydroxy α-Amino Esters Dynamic Activation of Single-Atom Catalysts by Reaction Intermediates: Conversion of Formic Acid on Rh/Fe3O4(001)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1