{"title":"通过腺相关病毒介导的近距离标记和质谱法分析小鼠大脑单细胞型蛋白质组","authors":"Him K Shrestha, Huan Sun, Ju Wang, Junmin Peng","doi":"10.1007/978-1-0716-3934-4_10","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell-type proteomics is an emerging field of research that combines cell-type specificity with the comprehensive proteome coverage offered by bulk proteomics. However, the extraction of single-cell-type proteomes remains a challenge, particularly for hard-to-isolate cells like neurons. In this chapter, we present an innovative technique for profiling single-cell-type proteomes using adeno-associated virus (AAV)-mediated proximity labeling (PL) and tandem-mass-tag (TMT) mass spectrometry. This technique eliminates the need for cell isolation and offers a streamlined workflow, including AAV delivery to express TurboID (an engineered biotin ligase) controlled by cell-type-specific promoters, biotinylated protein purification, on-bead digestion, TMT labeling, and liquid chromatography-mass spectrometry (LC-MS). We examined this method by analyzing distinct brain cell types in mice. Initially, recombinant AAVs were used to concurrently express TurboID and mCherry proteins driven by neuron- or astrocyte-specific promoters, which was validated through co-immunostaining with cellular markers. With biotin purification and TMT analysis, we successfully identified around 10,000 unique proteins from a few micrograms of protein samples with high reproducibility. Our statistical analyses revealed that these proteomes encompass cell-type-specific cellular pathways. By utilizing this technique, researchers can explore the proteomic landscape of specific cell types, paving the way for new insights into cellular processes, deciphering disease mechanisms, and identifying therapeutic targets in neuroscience and beyond.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2817 ","pages":"115-132"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Profiling Mouse Brain Single-Cell-Type Proteomes Via Adeno-Associated Virus-Mediated Proximity Labeling and Mass Spectrometry.\",\"authors\":\"Him K Shrestha, Huan Sun, Ju Wang, Junmin Peng\",\"doi\":\"10.1007/978-1-0716-3934-4_10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell-type proteomics is an emerging field of research that combines cell-type specificity with the comprehensive proteome coverage offered by bulk proteomics. However, the extraction of single-cell-type proteomes remains a challenge, particularly for hard-to-isolate cells like neurons. In this chapter, we present an innovative technique for profiling single-cell-type proteomes using adeno-associated virus (AAV)-mediated proximity labeling (PL) and tandem-mass-tag (TMT) mass spectrometry. This technique eliminates the need for cell isolation and offers a streamlined workflow, including AAV delivery to express TurboID (an engineered biotin ligase) controlled by cell-type-specific promoters, biotinylated protein purification, on-bead digestion, TMT labeling, and liquid chromatography-mass spectrometry (LC-MS). We examined this method by analyzing distinct brain cell types in mice. Initially, recombinant AAVs were used to concurrently express TurboID and mCherry proteins driven by neuron- or astrocyte-specific promoters, which was validated through co-immunostaining with cellular markers. With biotin purification and TMT analysis, we successfully identified around 10,000 unique proteins from a few micrograms of protein samples with high reproducibility. Our statistical analyses revealed that these proteomes encompass cell-type-specific cellular pathways. By utilizing this technique, researchers can explore the proteomic landscape of specific cell types, paving the way for new insights into cellular processes, deciphering disease mechanisms, and identifying therapeutic targets in neuroscience and beyond.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\"2817 \",\"pages\":\"115-132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-1-0716-3934-4_10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-3934-4_10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Profiling Mouse Brain Single-Cell-Type Proteomes Via Adeno-Associated Virus-Mediated Proximity Labeling and Mass Spectrometry.
Single-cell-type proteomics is an emerging field of research that combines cell-type specificity with the comprehensive proteome coverage offered by bulk proteomics. However, the extraction of single-cell-type proteomes remains a challenge, particularly for hard-to-isolate cells like neurons. In this chapter, we present an innovative technique for profiling single-cell-type proteomes using adeno-associated virus (AAV)-mediated proximity labeling (PL) and tandem-mass-tag (TMT) mass spectrometry. This technique eliminates the need for cell isolation and offers a streamlined workflow, including AAV delivery to express TurboID (an engineered biotin ligase) controlled by cell-type-specific promoters, biotinylated protein purification, on-bead digestion, TMT labeling, and liquid chromatography-mass spectrometry (LC-MS). We examined this method by analyzing distinct brain cell types in mice. Initially, recombinant AAVs were used to concurrently express TurboID and mCherry proteins driven by neuron- or astrocyte-specific promoters, which was validated through co-immunostaining with cellular markers. With biotin purification and TMT analysis, we successfully identified around 10,000 unique proteins from a few micrograms of protein samples with high reproducibility. Our statistical analyses revealed that these proteomes encompass cell-type-specific cellular pathways. By utilizing this technique, researchers can explore the proteomic landscape of specific cell types, paving the way for new insights into cellular processes, deciphering disease mechanisms, and identifying therapeutic targets in neuroscience and beyond.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.