{"title":"脂质氢过氧化物的反应及其对铁中毒敏感性的影响","authors":"Dmitry D. Saraev, Derek A. Pratt","doi":"10.1016/j.cbpa.2024.102478","DOIUrl":null,"url":null,"abstract":"<div><p>The accumulation of lipid hydroperoxides (LOOHs) has long been associated with numerous pathologies and has more recently been shown to drive a specific type of cell death known as ferroptosis. In competition with their detoxification by glutathione peroxidases, LOOHs can react with both one-electron reductants and one-electron oxidants to afford radicals that initiate lipid peroxidation (LPO) chain reactions leading to more LOOH. These radicals can alternatively undergo a variety of (primarily unimolecular) reactions leading to electrophilic species that destabilize the membrane and/or react with cellular nucleophiles. While some reaction mechanisms leading to lipid-derived electrophiles have been known for some time, others have only recently been elucidated. Since LOOH (and related peroxides, LOOL) undergo these various reactions at different rates to afford distinct product distributions specific to their structures, not all LOOHs (and LOOLs) should be equivalently problematic for the cell – be it in their propensity to initiate further LPO or fragment to electrophiles, drive membrane permeabilization and eventual cell death. Herein we briefly review the fates of LOOH and discuss how they may contribute to the modulation of cell sensitivity to ferroptosis by different lipids.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102478"},"PeriodicalIF":6.9000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000541/pdfft?md5=ce43e60434833511550b3e2a240cf1ab&pid=1-s2.0-S1367593124000541-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Reactions of lipid hydroperoxides and how they may contribute to ferroptosis sensitivity\",\"authors\":\"Dmitry D. Saraev, Derek A. Pratt\",\"doi\":\"10.1016/j.cbpa.2024.102478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The accumulation of lipid hydroperoxides (LOOHs) has long been associated with numerous pathologies and has more recently been shown to drive a specific type of cell death known as ferroptosis. In competition with their detoxification by glutathione peroxidases, LOOHs can react with both one-electron reductants and one-electron oxidants to afford radicals that initiate lipid peroxidation (LPO) chain reactions leading to more LOOH. These radicals can alternatively undergo a variety of (primarily unimolecular) reactions leading to electrophilic species that destabilize the membrane and/or react with cellular nucleophiles. While some reaction mechanisms leading to lipid-derived electrophiles have been known for some time, others have only recently been elucidated. Since LOOH (and related peroxides, LOOL) undergo these various reactions at different rates to afford distinct product distributions specific to their structures, not all LOOHs (and LOOLs) should be equivalently problematic for the cell – be it in their propensity to initiate further LPO or fragment to electrophiles, drive membrane permeabilization and eventual cell death. Herein we briefly review the fates of LOOH and discuss how they may contribute to the modulation of cell sensitivity to ferroptosis by different lipids.</p></div>\",\"PeriodicalId\":291,\"journal\":{\"name\":\"Current Opinion in Chemical Biology\",\"volume\":\"81 \",\"pages\":\"Article 102478\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1367593124000541/pdfft?md5=ce43e60434833511550b3e2a240cf1ab&pid=1-s2.0-S1367593124000541-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367593124000541\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593124000541","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Reactions of lipid hydroperoxides and how they may contribute to ferroptosis sensitivity
The accumulation of lipid hydroperoxides (LOOHs) has long been associated with numerous pathologies and has more recently been shown to drive a specific type of cell death known as ferroptosis. In competition with their detoxification by glutathione peroxidases, LOOHs can react with both one-electron reductants and one-electron oxidants to afford radicals that initiate lipid peroxidation (LPO) chain reactions leading to more LOOH. These radicals can alternatively undergo a variety of (primarily unimolecular) reactions leading to electrophilic species that destabilize the membrane and/or react with cellular nucleophiles. While some reaction mechanisms leading to lipid-derived electrophiles have been known for some time, others have only recently been elucidated. Since LOOH (and related peroxides, LOOL) undergo these various reactions at different rates to afford distinct product distributions specific to their structures, not all LOOHs (and LOOLs) should be equivalently problematic for the cell – be it in their propensity to initiate further LPO or fragment to electrophiles, drive membrane permeabilization and eventual cell death. Herein we briefly review the fates of LOOH and discuss how they may contribute to the modulation of cell sensitivity to ferroptosis by different lipids.
期刊介绍:
COCHBI (Current Opinion in Chemical Biology) is a systematic review journal designed to offer specialists a unique and educational platform. Its goal is to help professionals stay informed about the growing volume of information in the field of Chemical Biology through systematic reviews.