{"title":"基于分数阶拉格朗日多项式运算矩阵的高效配位技术,用于求解时空分数阶偏微分方程","authors":"Saurabh Kumar , Vikas Gupta , Dia Zeidan","doi":"10.1016/j.apnum.2024.06.014","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, we propose a novel and fast computational technique for solving a class of space-time fractional-order linear and non-linear partial differential equations. Caputo-type fractional derivatives are considered. The proposed method is based on the operational and pseudo-operational matrices for the fractional-order Lagrange polynomials. To carry out the method, first, we find the integer and fractional-order operational and pseudo-operational matrix of integration. The collocation technique and obtained operational and pseudo-operational matrices are then used to generate a system of algebraic equations by reducing the given space-time fractional differential problem. The resultant algebraic system is then easily solved by Newton's iterative methods. The upper bound of the fractional-order operational matrix of integration is also provided, which confirms the convergence of fractional-order Lagrange polynomial's approximation. Finally, some numerical experiments are conducted to demonstrate the applicability and usefulness of the suggested numerical scheme.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 249-264"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient collocation technique based on operational matrix of fractional-order Lagrange polynomials for solving the space-time fractional-order partial differential equations\",\"authors\":\"Saurabh Kumar , Vikas Gupta , Dia Zeidan\",\"doi\":\"10.1016/j.apnum.2024.06.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research, we propose a novel and fast computational technique for solving a class of space-time fractional-order linear and non-linear partial differential equations. Caputo-type fractional derivatives are considered. The proposed method is based on the operational and pseudo-operational matrices for the fractional-order Lagrange polynomials. To carry out the method, first, we find the integer and fractional-order operational and pseudo-operational matrix of integration. The collocation technique and obtained operational and pseudo-operational matrices are then used to generate a system of algebraic equations by reducing the given space-time fractional differential problem. The resultant algebraic system is then easily solved by Newton's iterative methods. The upper bound of the fractional-order operational matrix of integration is also provided, which confirms the convergence of fractional-order Lagrange polynomial's approximation. Finally, some numerical experiments are conducted to demonstrate the applicability and usefulness of the suggested numerical scheme.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"204 \",\"pages\":\"Pages 249-264\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001600\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001600","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An efficient collocation technique based on operational matrix of fractional-order Lagrange polynomials for solving the space-time fractional-order partial differential equations
In this research, we propose a novel and fast computational technique for solving a class of space-time fractional-order linear and non-linear partial differential equations. Caputo-type fractional derivatives are considered. The proposed method is based on the operational and pseudo-operational matrices for the fractional-order Lagrange polynomials. To carry out the method, first, we find the integer and fractional-order operational and pseudo-operational matrix of integration. The collocation technique and obtained operational and pseudo-operational matrices are then used to generate a system of algebraic equations by reducing the given space-time fractional differential problem. The resultant algebraic system is then easily solved by Newton's iterative methods. The upper bound of the fractional-order operational matrix of integration is also provided, which confirms the convergence of fractional-order Lagrange polynomial's approximation. Finally, some numerical experiments are conducted to demonstrate the applicability and usefulness of the suggested numerical scheme.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.