生成式人工智能和大型语言模型:逆向疫苗学的新领域

Kadhim Hayawi , Sakib Shahriar , Hany Alashwal , Mohamed Adel Serhani
{"title":"生成式人工智能和大型语言模型:逆向疫苗学的新领域","authors":"Kadhim Hayawi ,&nbsp;Sakib Shahriar ,&nbsp;Hany Alashwal ,&nbsp;Mohamed Adel Serhani","doi":"10.1016/j.imu.2024.101533","DOIUrl":null,"url":null,"abstract":"<div><p>Reverse vaccinology is an emerging concept in the field of vaccine development as it facilitates the identification of potential vaccine candidates. Biomedical research has been revolutionized with the recent innovations in Generative Artificial Intelligence (AI) and Large Language Models (LLMs). The intersection of these two technologies is explored in this study. In this study, the impact of Generative AI and LLMs in the field of vaccinology is explored. Through a comprehensive analysis of existing research, prospective use cases, and an experimental case study, this research highlights that LLMs and Generative AI have the potential to enhance the efficiency and accuracy of vaccine candidate identification. This work also discusses the ethical and privacy challenges, such as data consent and potential biases, raised by such applications that require careful consideration. This study paves the way for experts, researchers, and policymakers to further investigate the role and impact of Generative AI and LLM in vaccinology and medicine.</p></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"48 ","pages":"Article 101533"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352914824000893/pdfft?md5=a4c6a31b21f623150e5a40e26bd9227a&pid=1-s2.0-S2352914824000893-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Generative AI and large language models: A new frontier in reverse vaccinology\",\"authors\":\"Kadhim Hayawi ,&nbsp;Sakib Shahriar ,&nbsp;Hany Alashwal ,&nbsp;Mohamed Adel Serhani\",\"doi\":\"10.1016/j.imu.2024.101533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reverse vaccinology is an emerging concept in the field of vaccine development as it facilitates the identification of potential vaccine candidates. Biomedical research has been revolutionized with the recent innovations in Generative Artificial Intelligence (AI) and Large Language Models (LLMs). The intersection of these two technologies is explored in this study. In this study, the impact of Generative AI and LLMs in the field of vaccinology is explored. Through a comprehensive analysis of existing research, prospective use cases, and an experimental case study, this research highlights that LLMs and Generative AI have the potential to enhance the efficiency and accuracy of vaccine candidate identification. This work also discusses the ethical and privacy challenges, such as data consent and potential biases, raised by such applications that require careful consideration. This study paves the way for experts, researchers, and policymakers to further investigate the role and impact of Generative AI and LLM in vaccinology and medicine.</p></div>\",\"PeriodicalId\":13953,\"journal\":{\"name\":\"Informatics in Medicine Unlocked\",\"volume\":\"48 \",\"pages\":\"Article 101533\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352914824000893/pdfft?md5=a4c6a31b21f623150e5a40e26bd9227a&pid=1-s2.0-S2352914824000893-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics in Medicine Unlocked\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352914824000893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914824000893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

反向疫苗学是疫苗开发领域的一个新兴概念,因为它有助于识别潜在的候选疫苗。随着最近在生成式人工智能(AI)和大型语言模型(LLMs)方面的创新,生物医学研究发生了革命性的变化。本研究探讨了这两项技术的交叉点。本研究探讨了生成式人工智能和大型语言模型对疫苗学领域的影响。通过对现有研究、前瞻性用例和实验性案例研究的综合分析,本研究强调了 LLM 和生成式人工智能在提高候选疫苗识别的效率和准确性方面的潜力。这项工作还讨论了此类应用带来的伦理和隐私挑战,如数据同意和潜在偏见,这些都需要仔细考虑。这项研究为专家、研究人员和决策者进一步研究生成式人工智能和 LLM 在疫苗学和医学中的作用和影响铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generative AI and large language models: A new frontier in reverse vaccinology

Reverse vaccinology is an emerging concept in the field of vaccine development as it facilitates the identification of potential vaccine candidates. Biomedical research has been revolutionized with the recent innovations in Generative Artificial Intelligence (AI) and Large Language Models (LLMs). The intersection of these two technologies is explored in this study. In this study, the impact of Generative AI and LLMs in the field of vaccinology is explored. Through a comprehensive analysis of existing research, prospective use cases, and an experimental case study, this research highlights that LLMs and Generative AI have the potential to enhance the efficiency and accuracy of vaccine candidate identification. This work also discusses the ethical and privacy challenges, such as data consent and potential biases, raised by such applications that require careful consideration. This study paves the way for experts, researchers, and policymakers to further investigate the role and impact of Generative AI and LLM in vaccinology and medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
期刊最新文献
Usability and accessibility in mHealth stroke apps: An empirical assessment Spatiotemporal chest wall movement analysis using depth sensor imaging for detecting respiratory asynchrony Regression and classification of Windkessel parameters from non-invasive cardiovascular quantities using a fully connected neural network Patient2Trial: From patient to participant in clinical trials using large language models Structural modification of Naproxen; physicochemical, spectral, medicinal, and pharmacological evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1