垂体和睾丸功能抑制的不同机制。

Medical biology Pub Date : 1986-01-01
J Sandow, K Engelbart, W von Rechenberg
{"title":"垂体和睾丸功能抑制的不同机制。","authors":"J Sandow,&nbsp;K Engelbart,&nbsp;W von Rechenberg","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The differential mechanisms reducing androgen secretion by LHRH agonists are discussed with relevance to clinical therapy. LH secretion can be desensitised by exposure to agonists using high doses, frequent injections or sustained release/constant infusion. The desensitized pituitary is refractory to hypothalamic stimulation. Pituitary receptor suppression is associated with depletion of pituitary gonadotrophin content, and a decline of LH and FSH secretion to a basal rate. Recovery of LH responsiveness to endogenous LHRH stimulation requires restitution of gonadotrophin content (about 7 days in rats). After long-term infusions in normal men, testosterone secretion recovers within 7-10 days. The binding capacity of testicular LH/hCG receptors is reduced in rats after supraphysiological gonadotrophin stimulation, by agonists or directly by hCG, concomitantly the steroidogenic capacity of the testis in vitro is impaired. Qualitative changes in androgen biosynthesis are a marked fall in testosterone production and dose-dependent enhancement of progesterone production. After 12 months of buserelin injections, the changes in hCG-stimulated rat testes are an increased ratio of progesterone/17-OH-progesterone (inhibition of 17-hydroxylase), a reduced capacity for secretion of androstenedione and testosterone (block of 17,20-desmolase), and increased 5 alpha-pregnane-3,20-dione (this steroid inhibits the 17,20-desmolase, similarly to progesterone). After treatment, Leydig cell function recovers completely. Leydig cell hyperplasia is observed as a result of the steroidogenic changes. These findings in rats have not been observed in dogs, monkeys or in humans.(ABSTRACT TRUNCATED AT 250 WORDS)</p>","PeriodicalId":18313,"journal":{"name":"Medical biology","volume":"63 5-6","pages":"192-200"},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The different mechanisms for suppression of pituitary and testicular function.\",\"authors\":\"J Sandow,&nbsp;K Engelbart,&nbsp;W von Rechenberg\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The differential mechanisms reducing androgen secretion by LHRH agonists are discussed with relevance to clinical therapy. LH secretion can be desensitised by exposure to agonists using high doses, frequent injections or sustained release/constant infusion. The desensitized pituitary is refractory to hypothalamic stimulation. Pituitary receptor suppression is associated with depletion of pituitary gonadotrophin content, and a decline of LH and FSH secretion to a basal rate. Recovery of LH responsiveness to endogenous LHRH stimulation requires restitution of gonadotrophin content (about 7 days in rats). After long-term infusions in normal men, testosterone secretion recovers within 7-10 days. The binding capacity of testicular LH/hCG receptors is reduced in rats after supraphysiological gonadotrophin stimulation, by agonists or directly by hCG, concomitantly the steroidogenic capacity of the testis in vitro is impaired. Qualitative changes in androgen biosynthesis are a marked fall in testosterone production and dose-dependent enhancement of progesterone production. After 12 months of buserelin injections, the changes in hCG-stimulated rat testes are an increased ratio of progesterone/17-OH-progesterone (inhibition of 17-hydroxylase), a reduced capacity for secretion of androstenedione and testosterone (block of 17,20-desmolase), and increased 5 alpha-pregnane-3,20-dione (this steroid inhibits the 17,20-desmolase, similarly to progesterone). After treatment, Leydig cell function recovers completely. Leydig cell hyperplasia is observed as a result of the steroidogenic changes. These findings in rats have not been observed in dogs, monkeys or in humans.(ABSTRACT TRUNCATED AT 250 WORDS)</p>\",\"PeriodicalId\":18313,\"journal\":{\"name\":\"Medical biology\",\"volume\":\"63 5-6\",\"pages\":\"192-200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了LHRH激动剂减少雄激素分泌的不同机制,并与临床治疗相关。黄体生成素分泌可以通过暴露于高剂量、频繁注射或持续释放/持续输液的激动剂脱敏。脱敏的垂体对下丘脑的刺激是不耐受的。垂体受体抑制与垂体促性腺激素含量的减少以及LH和FSH分泌下降到基础水平有关。恢复LH对内源性LHRH刺激的反应性需要恢复促性腺激素含量(大鼠约7天)。正常男性长期注射后,睾酮分泌在7-10天内恢复。经促性腺激素刺激、激动剂刺激或直接经hCG刺激后,大鼠睾丸LH/hCG受体结合能力降低,同时睾丸体外类固醇生成能力受损。雄激素生物合成的质变是睾酮产量的显著下降和黄体酮产量的剂量依赖性增强。注射12个月后,hcg刺激的大鼠睾丸的变化是孕酮/17- oh孕酮的比例增加(17-羟化酶的抑制),雄烯二酮和睾酮的分泌能力降低(阻断17,20-去糖化酶),5 α -孕酮-3,20-二酮增加(这种类固醇抑制17,20-去糖化酶,类似于孕酮)。治疗后,间质细胞功能完全恢复。间质细胞增生是甾体性改变的结果。在大鼠身上的这些发现在狗、猴子或人类身上都没有观察到。(摘要删节250字)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The different mechanisms for suppression of pituitary and testicular function.

The differential mechanisms reducing androgen secretion by LHRH agonists are discussed with relevance to clinical therapy. LH secretion can be desensitised by exposure to agonists using high doses, frequent injections or sustained release/constant infusion. The desensitized pituitary is refractory to hypothalamic stimulation. Pituitary receptor suppression is associated with depletion of pituitary gonadotrophin content, and a decline of LH and FSH secretion to a basal rate. Recovery of LH responsiveness to endogenous LHRH stimulation requires restitution of gonadotrophin content (about 7 days in rats). After long-term infusions in normal men, testosterone secretion recovers within 7-10 days. The binding capacity of testicular LH/hCG receptors is reduced in rats after supraphysiological gonadotrophin stimulation, by agonists or directly by hCG, concomitantly the steroidogenic capacity of the testis in vitro is impaired. Qualitative changes in androgen biosynthesis are a marked fall in testosterone production and dose-dependent enhancement of progesterone production. After 12 months of buserelin injections, the changes in hCG-stimulated rat testes are an increased ratio of progesterone/17-OH-progesterone (inhibition of 17-hydroxylase), a reduced capacity for secretion of androstenedione and testosterone (block of 17,20-desmolase), and increased 5 alpha-pregnane-3,20-dione (this steroid inhibits the 17,20-desmolase, similarly to progesterone). After treatment, Leydig cell function recovers completely. Leydig cell hyperplasia is observed as a result of the steroidogenic changes. These findings in rats have not been observed in dogs, monkeys or in humans.(ABSTRACT TRUNCATED AT 250 WORDS)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Growth inhibitory polypeptides in the regulation of cell proliferation. Relationship between tryptophan and serotonin concentrations in postmortem human brain. Peptides and neurotransmission in the central nervous system. GABA and affective disorders. Chemical neurotransmission in the parkinsonian brain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1