Abdus Sattar , Md. Asif Mahmud Ridoy , Aloke Kumar Saha , Hafiz Md. Hasan Babu , Mohammad Nurul Huda
{"title":"利用计算机视觉、深度学习和化学传感器检测水果化学掺假的综合方法","authors":"Abdus Sattar , Md. Asif Mahmud Ridoy , Aloke Kumar Saha , Hafiz Md. Hasan Babu , Mohammad Nurul Huda","doi":"10.1016/j.iswa.2024.200402","DOIUrl":null,"url":null,"abstract":"<div><p>Contamination of harmful additives in fruits has become a concerning norm these days. Owing to the great popularity of fruits, dishonest vendors frequently use harmful chemicals to contaminate fruits to extend their shelf life, which is extremely dangerous for the general public's health. To mitigate this issue, machine-learning algorithms like Decision Tree Classifier, Naïve Bayes and a deep learning model named “DurbeenNet” are evaluated separately. Alongside, a computer vision-based detection method coupled with a hybrid model is proposed that combines deep learning and chemical sensor. Formaldehyde Detection Sensor is used in this experiment to take reading of the sensor data. Mango, Apple, Banana, and Malta are taken as sample fruits in this study. Sensor data for both fresh and chemical-mixed fruit is newly collected using Formaldehyde Detection Sensor. The above mentioned sensor data along with the previously captures images of both fresh and chemical-mixed state are being integrated to a hybrid model. Among two machine learning algorithms naïve bayes come up with 82 % accuracy. Using both sensor data and captured image data, the proposed model “SensorNet” provides highest accuracy of 97.03 % which is substantial than “DurbeenNet” model's accuracy. Through the utilization of these fruit samples, formaldehyde detection sensor provides instantaneous detection, identifying the specific toxic substances present in the contaminated fruits.</p></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"23 ","pages":"Article 200402"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667305324000760/pdfft?md5=a8a86f2f114dacecd71a8e4c0940af1d&pid=1-s2.0-S2667305324000760-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A comprehensive approach to detecting chemical adulteration in fruits using computer vision, deep learning, and chemical sensors\",\"authors\":\"Abdus Sattar , Md. Asif Mahmud Ridoy , Aloke Kumar Saha , Hafiz Md. Hasan Babu , Mohammad Nurul Huda\",\"doi\":\"10.1016/j.iswa.2024.200402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Contamination of harmful additives in fruits has become a concerning norm these days. Owing to the great popularity of fruits, dishonest vendors frequently use harmful chemicals to contaminate fruits to extend their shelf life, which is extremely dangerous for the general public's health. To mitigate this issue, machine-learning algorithms like Decision Tree Classifier, Naïve Bayes and a deep learning model named “DurbeenNet” are evaluated separately. Alongside, a computer vision-based detection method coupled with a hybrid model is proposed that combines deep learning and chemical sensor. Formaldehyde Detection Sensor is used in this experiment to take reading of the sensor data. Mango, Apple, Banana, and Malta are taken as sample fruits in this study. Sensor data for both fresh and chemical-mixed fruit is newly collected using Formaldehyde Detection Sensor. The above mentioned sensor data along with the previously captures images of both fresh and chemical-mixed state are being integrated to a hybrid model. Among two machine learning algorithms naïve bayes come up with 82 % accuracy. Using both sensor data and captured image data, the proposed model “SensorNet” provides highest accuracy of 97.03 % which is substantial than “DurbeenNet” model's accuracy. Through the utilization of these fruit samples, formaldehyde detection sensor provides instantaneous detection, identifying the specific toxic substances present in the contaminated fruits.</p></div>\",\"PeriodicalId\":100684,\"journal\":{\"name\":\"Intelligent Systems with Applications\",\"volume\":\"23 \",\"pages\":\"Article 200402\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667305324000760/pdfft?md5=a8a86f2f114dacecd71a8e4c0940af1d&pid=1-s2.0-S2667305324000760-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667305324000760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324000760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comprehensive approach to detecting chemical adulteration in fruits using computer vision, deep learning, and chemical sensors
Contamination of harmful additives in fruits has become a concerning norm these days. Owing to the great popularity of fruits, dishonest vendors frequently use harmful chemicals to contaminate fruits to extend their shelf life, which is extremely dangerous for the general public's health. To mitigate this issue, machine-learning algorithms like Decision Tree Classifier, Naïve Bayes and a deep learning model named “DurbeenNet” are evaluated separately. Alongside, a computer vision-based detection method coupled with a hybrid model is proposed that combines deep learning and chemical sensor. Formaldehyde Detection Sensor is used in this experiment to take reading of the sensor data. Mango, Apple, Banana, and Malta are taken as sample fruits in this study. Sensor data for both fresh and chemical-mixed fruit is newly collected using Formaldehyde Detection Sensor. The above mentioned sensor data along with the previously captures images of both fresh and chemical-mixed state are being integrated to a hybrid model. Among two machine learning algorithms naïve bayes come up with 82 % accuracy. Using both sensor data and captured image data, the proposed model “SensorNet” provides highest accuracy of 97.03 % which is substantial than “DurbeenNet” model's accuracy. Through the utilization of these fruit samples, formaldehyde detection sensor provides instantaneous detection, identifying the specific toxic substances present in the contaminated fruits.