FangFang Qian, RenHong He, XiaoHui Du, Yi Wei, Zhou Zhou, JianZhong Fan, YouHua He
{"title":"小胶质细胞和星形胶质细胞的反应有助于缓解重复经颅磁刺激对创伤性脑损伤大鼠造成的炎症损伤","authors":"FangFang Qian, RenHong He, XiaoHui Du, Yi Wei, Zhou Zhou, JianZhong Fan, YouHua He","doi":"10.1007/s11064-024-04197-7","DOIUrl":null,"url":null,"abstract":"<div><p>Repetitive transcranial magnetic stimulation (rTMS) is a therapeutic strategy that shows promise in ameliorating the clinical sequelae following traumatic brain injury (TBI). These improvements are associated with neuroplastic changes in neurons and their synaptic connections. However, it has been hypothesized that rTMS may also modulate microglia and astrocytes, potentially potentiating their neuroprotective capabilities. This study aims to investigate the effects of high-frequency rTMS on microglia and astrocytes that may contribute to its neuroprotective effects. Feeney’s weight-dropping method was used to establish rat models of moderate TBI. To evaluate the neuroprotective effect of high frequency rTMS on rats by observing the synaptic ultrastructure and the level of neuron apoptosis. The levels of several important inflammation-related proteins within microglia and astrocytes were assessed through immunofluorescence staining and western blot. Our findings demonstrate that injured neurons can be rescued through the modulation of microglia and astrocytes by rTMS. This modulation plays a key role in preserving the synaptic ultrastructure and inhibiting neuronal apoptosis. Among microglia, we observed that rTMS inhibited the levels of proinflammatory factors (CD16, IL-6 and TNF-α) and promoted the levels of anti-inflammatory factors (CD206, IL-10 and TNF-β). rTMS also reduced the levels of pyroptosis within microglia and pyroptosis-related proteins (NLRP3, Caspase-1, GSDMD, IL-1β and IL-18). Moreover, rTMS downregulated P75NTR expression and up-regulated IL33 expression in astrocytes. These findings suggest that regulation of microglia and astrocytes is the mechanism through which rTMS attenuates neuronal inflammatory damage after moderate TBI.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microglia and Astrocytes Responses Contribute to Alleviating Inflammatory Damage by Repetitive Transcranial Magnetic Stimulation in Rats with Traumatic Brain Injury\",\"authors\":\"FangFang Qian, RenHong He, XiaoHui Du, Yi Wei, Zhou Zhou, JianZhong Fan, YouHua He\",\"doi\":\"10.1007/s11064-024-04197-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Repetitive transcranial magnetic stimulation (rTMS) is a therapeutic strategy that shows promise in ameliorating the clinical sequelae following traumatic brain injury (TBI). These improvements are associated with neuroplastic changes in neurons and their synaptic connections. However, it has been hypothesized that rTMS may also modulate microglia and astrocytes, potentially potentiating their neuroprotective capabilities. This study aims to investigate the effects of high-frequency rTMS on microglia and astrocytes that may contribute to its neuroprotective effects. Feeney’s weight-dropping method was used to establish rat models of moderate TBI. To evaluate the neuroprotective effect of high frequency rTMS on rats by observing the synaptic ultrastructure and the level of neuron apoptosis. The levels of several important inflammation-related proteins within microglia and astrocytes were assessed through immunofluorescence staining and western blot. Our findings demonstrate that injured neurons can be rescued through the modulation of microglia and astrocytes by rTMS. This modulation plays a key role in preserving the synaptic ultrastructure and inhibiting neuronal apoptosis. Among microglia, we observed that rTMS inhibited the levels of proinflammatory factors (CD16, IL-6 and TNF-α) and promoted the levels of anti-inflammatory factors (CD206, IL-10 and TNF-β). rTMS also reduced the levels of pyroptosis within microglia and pyroptosis-related proteins (NLRP3, Caspase-1, GSDMD, IL-1β and IL-18). Moreover, rTMS downregulated P75NTR expression and up-regulated IL33 expression in astrocytes. These findings suggest that regulation of microglia and astrocytes is the mechanism through which rTMS attenuates neuronal inflammatory damage after moderate TBI.</p></div>\",\"PeriodicalId\":719,\"journal\":{\"name\":\"Neurochemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11064-024-04197-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-024-04197-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Microglia and Astrocytes Responses Contribute to Alleviating Inflammatory Damage by Repetitive Transcranial Magnetic Stimulation in Rats with Traumatic Brain Injury
Repetitive transcranial magnetic stimulation (rTMS) is a therapeutic strategy that shows promise in ameliorating the clinical sequelae following traumatic brain injury (TBI). These improvements are associated with neuroplastic changes in neurons and their synaptic connections. However, it has been hypothesized that rTMS may also modulate microglia and astrocytes, potentially potentiating their neuroprotective capabilities. This study aims to investigate the effects of high-frequency rTMS on microglia and astrocytes that may contribute to its neuroprotective effects. Feeney’s weight-dropping method was used to establish rat models of moderate TBI. To evaluate the neuroprotective effect of high frequency rTMS on rats by observing the synaptic ultrastructure and the level of neuron apoptosis. The levels of several important inflammation-related proteins within microglia and astrocytes were assessed through immunofluorescence staining and western blot. Our findings demonstrate that injured neurons can be rescued through the modulation of microglia and astrocytes by rTMS. This modulation plays a key role in preserving the synaptic ultrastructure and inhibiting neuronal apoptosis. Among microglia, we observed that rTMS inhibited the levels of proinflammatory factors (CD16, IL-6 and TNF-α) and promoted the levels of anti-inflammatory factors (CD206, IL-10 and TNF-β). rTMS also reduced the levels of pyroptosis within microglia and pyroptosis-related proteins (NLRP3, Caspase-1, GSDMD, IL-1β and IL-18). Moreover, rTMS downregulated P75NTR expression and up-regulated IL33 expression in astrocytes. These findings suggest that regulation of microglia and astrocytes is the mechanism through which rTMS attenuates neuronal inflammatory damage after moderate TBI.
期刊介绍:
Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.