Levent Mutlu, Blair McNamara, Stefania Bellone, Diego D Manavella, Cem Demirkiran, Michelle Greenman, Miguel Skyler Z Verzosa, Natalia Buza, Pei Hui, Tobias Max Philipp Hartwich, Justin Harold, Yang Yang-Hartwich, Margherita Zipponi, Gary Altwerger, Elena Ratner, Gloria S Huang, Mitchell Clark, Vaagn Andikyan, Masoud Azodi, Peter E Schwartz, Alessandro D Santin
{"title":"Trastuzumab deruxtecan(DS-8201a)是一种 HER2 靶向抗体-药物共轭物,在体外和体内对过度表达 HER2 的原发性和转移性卵巢肿瘤具有抗肿瘤活性。","authors":"Levent Mutlu, Blair McNamara, Stefania Bellone, Diego D Manavella, Cem Demirkiran, Michelle Greenman, Miguel Skyler Z Verzosa, Natalia Buza, Pei Hui, Tobias Max Philipp Hartwich, Justin Harold, Yang Yang-Hartwich, Margherita Zipponi, Gary Altwerger, Elena Ratner, Gloria S Huang, Mitchell Clark, Vaagn Andikyan, Masoud Azodi, Peter E Schwartz, Alessandro D Santin","doi":"10.1007/s10585-024-10297-z","DOIUrl":null,"url":null,"abstract":"<p><p>High-grade serous ovarian cancer (HGSOC) and ovarian clear cell carcinoma (CC), are biologically aggressive tumors endowed with the ability to rapidly metastasize to the abdominal cavity and distant organs. About 10% of HGSOC and 30% of CC demonstrate HER2 IHC 3 + receptor over-expression. We evaluated the efficacy of trastuzumab deruxtecan (T-DXd; DS-8201a), a novel HER2-targeting antibody-drug conjugate (ADC) to an ADC isotype control (CTL ADC) against multiple HGSOC and CC tumor models. Eleven ovarian cancer cell lines including a matched primary and metastatic cell line established from the same patient, were evaluated for HER2 expression by immunohistochemistry and flow cytometry, and gene amplification by fluorescence in situ hybridization assays. In vitro experiments demonstrated T-DXd to be significantly more effective against HER2 3 + HGSOC and CC cell lines when compared to CTL ADC (p < 0.0001). T-DXd induced efficient bystander killing of HER2 non-expressing tumor cells when admixed with HER2 3 + cells. In vivo activity of T-DXd was studied in HER2 IHC 3 + HGSOC and CC mouse xenograft models. We found T-DXd to be significantly more effective than CTL ADC against HER2 3 + HGSOC (KR(CH)31) and CC (OVA10) xenografts with a significant difference in tumor growth starting at day 8 (p = 0.0003 for KR(CH)31, p < 0.0001 for OVA10). T-DXd also conferred a survival advantage in both xenograft models. T-DXd may represent an effective ADC against primary and metastatic HER2-overexpressing HGSOC and CC.</p>","PeriodicalId":10267,"journal":{"name":"Clinical & Experimental Metastasis","volume":" ","pages":"765-775"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trastuzumab deruxtecan (DS-8201a), a HER2-targeting antibody-drug conjugate, demonstrates in vitro and in vivo antitumor activity against primary and metastatic ovarian tumors overexpressing HER2.\",\"authors\":\"Levent Mutlu, Blair McNamara, Stefania Bellone, Diego D Manavella, Cem Demirkiran, Michelle Greenman, Miguel Skyler Z Verzosa, Natalia Buza, Pei Hui, Tobias Max Philipp Hartwich, Justin Harold, Yang Yang-Hartwich, Margherita Zipponi, Gary Altwerger, Elena Ratner, Gloria S Huang, Mitchell Clark, Vaagn Andikyan, Masoud Azodi, Peter E Schwartz, Alessandro D Santin\",\"doi\":\"10.1007/s10585-024-10297-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-grade serous ovarian cancer (HGSOC) and ovarian clear cell carcinoma (CC), are biologically aggressive tumors endowed with the ability to rapidly metastasize to the abdominal cavity and distant organs. About 10% of HGSOC and 30% of CC demonstrate HER2 IHC 3 + receptor over-expression. We evaluated the efficacy of trastuzumab deruxtecan (T-DXd; DS-8201a), a novel HER2-targeting antibody-drug conjugate (ADC) to an ADC isotype control (CTL ADC) against multiple HGSOC and CC tumor models. Eleven ovarian cancer cell lines including a matched primary and metastatic cell line established from the same patient, were evaluated for HER2 expression by immunohistochemistry and flow cytometry, and gene amplification by fluorescence in situ hybridization assays. In vitro experiments demonstrated T-DXd to be significantly more effective against HER2 3 + HGSOC and CC cell lines when compared to CTL ADC (p < 0.0001). T-DXd induced efficient bystander killing of HER2 non-expressing tumor cells when admixed with HER2 3 + cells. In vivo activity of T-DXd was studied in HER2 IHC 3 + HGSOC and CC mouse xenograft models. We found T-DXd to be significantly more effective than CTL ADC against HER2 3 + HGSOC (KR(CH)31) and CC (OVA10) xenografts with a significant difference in tumor growth starting at day 8 (p = 0.0003 for KR(CH)31, p < 0.0001 for OVA10). T-DXd also conferred a survival advantage in both xenograft models. T-DXd may represent an effective ADC against primary and metastatic HER2-overexpressing HGSOC and CC.</p>\",\"PeriodicalId\":10267,\"journal\":{\"name\":\"Clinical & Experimental Metastasis\",\"volume\":\" \",\"pages\":\"765-775\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical & Experimental Metastasis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10585-024-10297-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical & Experimental Metastasis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10585-024-10297-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Trastuzumab deruxtecan (DS-8201a), a HER2-targeting antibody-drug conjugate, demonstrates in vitro and in vivo antitumor activity against primary and metastatic ovarian tumors overexpressing HER2.
High-grade serous ovarian cancer (HGSOC) and ovarian clear cell carcinoma (CC), are biologically aggressive tumors endowed with the ability to rapidly metastasize to the abdominal cavity and distant organs. About 10% of HGSOC and 30% of CC demonstrate HER2 IHC 3 + receptor over-expression. We evaluated the efficacy of trastuzumab deruxtecan (T-DXd; DS-8201a), a novel HER2-targeting antibody-drug conjugate (ADC) to an ADC isotype control (CTL ADC) against multiple HGSOC and CC tumor models. Eleven ovarian cancer cell lines including a matched primary and metastatic cell line established from the same patient, were evaluated for HER2 expression by immunohistochemistry and flow cytometry, and gene amplification by fluorescence in situ hybridization assays. In vitro experiments demonstrated T-DXd to be significantly more effective against HER2 3 + HGSOC and CC cell lines when compared to CTL ADC (p < 0.0001). T-DXd induced efficient bystander killing of HER2 non-expressing tumor cells when admixed with HER2 3 + cells. In vivo activity of T-DXd was studied in HER2 IHC 3 + HGSOC and CC mouse xenograft models. We found T-DXd to be significantly more effective than CTL ADC against HER2 3 + HGSOC (KR(CH)31) and CC (OVA10) xenografts with a significant difference in tumor growth starting at day 8 (p = 0.0003 for KR(CH)31, p < 0.0001 for OVA10). T-DXd also conferred a survival advantage in both xenograft models. T-DXd may represent an effective ADC against primary and metastatic HER2-overexpressing HGSOC and CC.
期刊介绍:
The Journal''s scope encompasses all aspects of metastasis research, whether laboratory-based, experimental or clinical and therapeutic. It covers such areas as molecular biology, pharmacology, tumor biology, and clinical cancer treatment (with all its subdivisions of surgery, chemotherapy and radio-therapy as well as pathology and epidemiology) insofar as these disciplines are concerned with the Journal''s core subject of metastasis formation, prevention and treatment.