D2-HG对骨骼肌造成新陈代谢压力时,自噬信号促进骨骼肌全系统重塑。

IF 7 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Molecular Metabolism Pub Date : 2024-06-21 DOI:10.1016/j.molmet.2024.101969
Yaqi Gao , Kyoungmin Kim , Heidi Vitrac , Rebecca L. Salazar , Benjamin D. Gould , Daniel Soedkamp , Weston Spivia , Koen Raedschelders , An Q. Dinh , Anna G. Guzman , Lin Tan , Stavros Azinas , David J.R. Taylor , Walter Schiffer , Daniel McNavish , Helen B. Burks , Roberta A. Gottlieb , Philip L. Lorenzi , Blake M. Hanson , Jennifer E. Van Eyk , Anja Karlstaedt
{"title":"D2-HG对骨骼肌造成新陈代谢压力时,自噬信号促进骨骼肌全系统重塑。","authors":"Yaqi Gao ,&nbsp;Kyoungmin Kim ,&nbsp;Heidi Vitrac ,&nbsp;Rebecca L. Salazar ,&nbsp;Benjamin D. Gould ,&nbsp;Daniel Soedkamp ,&nbsp;Weston Spivia ,&nbsp;Koen Raedschelders ,&nbsp;An Q. Dinh ,&nbsp;Anna G. Guzman ,&nbsp;Lin Tan ,&nbsp;Stavros Azinas ,&nbsp;David J.R. Taylor ,&nbsp;Walter Schiffer ,&nbsp;Daniel McNavish ,&nbsp;Helen B. Burks ,&nbsp;Roberta A. Gottlieb ,&nbsp;Philip L. Lorenzi ,&nbsp;Blake M. Hanson ,&nbsp;Jennifer E. Van Eyk ,&nbsp;Anja Karlstaedt","doi":"10.1016/j.molmet.2024.101969","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Cachexia is a metabolic disorder and comorbidity with cancer and heart failure. The syndrome impacts more than thirty million people worldwide, accounting for 20% of all cancer deaths. In acute myeloid leukemia, somatic mutations of the metabolic enzyme isocitrate dehydrogenase 1 and 2 cause the production of the oncometabolite D2-hydroxyglutarate (D2-HG). Increased production of D2-HG is associated with heart and skeletal muscle atrophy, but the mechanistic links between metabolic and proteomic remodeling remain poorly understood. Therefore, we assessed how oncometabolic stress by D2-HG activates autophagy and drives skeletal muscle loss.</p></div><div><h3>Methods</h3><p>We quantified genomic, metabolomic, and proteomic changes in cultured skeletal muscle cells and mouse models of IDH-mutant leukemia using RNA sequencing, mass spectrometry, and computational modeling.</p></div><div><h3>Results</h3><p>D2-HG impairs NADH redox homeostasis in myotubes. Increased NAD+ levels drive activation of nuclear deacetylase Sirt1, which causes deacetylation and activation of LC3, a key regulator of autophagy. Using LC3 mutants, we confirm that deacetylation of LC3 by Sirt1 shifts its distribution from the nucleus into the cytosol, where it can undergo lipidation at pre-autophagic membranes. Sirt1 silencing or p300 overexpression attenuated autophagy activation in myotubes. <em>In vivo</em>, we identified increased muscle atrophy and reduced grip strength in response to D2-HG in male vs. female mice. In male mice, glycolytic intermediates accumulated, and protein expression of oxidative phosphorylation machinery was reduced. In contrast, female animals upregulated the same proteins, attenuating the phenotype <em>in vivo</em>. Network modeling and machine learning algorithms allowed us to identify candidate proteins essential for regulating oncometabolic adaptation in mouse skeletal muscle.</p></div><div><h3>Conclusions</h3><p>Our multi-omics approach exposes new metabolic vulnerabilities in response to D2-HG in skeletal muscle and provides a conceptual framework for identifying therapeutic targets in cachexia.</p></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"86 ","pages":"Article 101969"},"PeriodicalIF":7.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212877824001005/pdfft?md5=b088c88f4ae08c077b6c20892d34c2d8&pid=1-s2.0-S2212877824001005-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Autophagic signaling promotes systems-wide remodeling in skeletal muscle upon oncometabolic stress by D2-HG\",\"authors\":\"Yaqi Gao ,&nbsp;Kyoungmin Kim ,&nbsp;Heidi Vitrac ,&nbsp;Rebecca L. Salazar ,&nbsp;Benjamin D. Gould ,&nbsp;Daniel Soedkamp ,&nbsp;Weston Spivia ,&nbsp;Koen Raedschelders ,&nbsp;An Q. Dinh ,&nbsp;Anna G. Guzman ,&nbsp;Lin Tan ,&nbsp;Stavros Azinas ,&nbsp;David J.R. Taylor ,&nbsp;Walter Schiffer ,&nbsp;Daniel McNavish ,&nbsp;Helen B. Burks ,&nbsp;Roberta A. Gottlieb ,&nbsp;Philip L. Lorenzi ,&nbsp;Blake M. Hanson ,&nbsp;Jennifer E. Van Eyk ,&nbsp;Anja Karlstaedt\",\"doi\":\"10.1016/j.molmet.2024.101969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p>Cachexia is a metabolic disorder and comorbidity with cancer and heart failure. The syndrome impacts more than thirty million people worldwide, accounting for 20% of all cancer deaths. In acute myeloid leukemia, somatic mutations of the metabolic enzyme isocitrate dehydrogenase 1 and 2 cause the production of the oncometabolite D2-hydroxyglutarate (D2-HG). Increased production of D2-HG is associated with heart and skeletal muscle atrophy, but the mechanistic links between metabolic and proteomic remodeling remain poorly understood. Therefore, we assessed how oncometabolic stress by D2-HG activates autophagy and drives skeletal muscle loss.</p></div><div><h3>Methods</h3><p>We quantified genomic, metabolomic, and proteomic changes in cultured skeletal muscle cells and mouse models of IDH-mutant leukemia using RNA sequencing, mass spectrometry, and computational modeling.</p></div><div><h3>Results</h3><p>D2-HG impairs NADH redox homeostasis in myotubes. Increased NAD+ levels drive activation of nuclear deacetylase Sirt1, which causes deacetylation and activation of LC3, a key regulator of autophagy. Using LC3 mutants, we confirm that deacetylation of LC3 by Sirt1 shifts its distribution from the nucleus into the cytosol, where it can undergo lipidation at pre-autophagic membranes. Sirt1 silencing or p300 overexpression attenuated autophagy activation in myotubes. <em>In vivo</em>, we identified increased muscle atrophy and reduced grip strength in response to D2-HG in male vs. female mice. In male mice, glycolytic intermediates accumulated, and protein expression of oxidative phosphorylation machinery was reduced. In contrast, female animals upregulated the same proteins, attenuating the phenotype <em>in vivo</em>. Network modeling and machine learning algorithms allowed us to identify candidate proteins essential for regulating oncometabolic adaptation in mouse skeletal muscle.</p></div><div><h3>Conclusions</h3><p>Our multi-omics approach exposes new metabolic vulnerabilities in response to D2-HG in skeletal muscle and provides a conceptual framework for identifying therapeutic targets in cachexia.</p></div>\",\"PeriodicalId\":18765,\"journal\":{\"name\":\"Molecular Metabolism\",\"volume\":\"86 \",\"pages\":\"Article 101969\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212877824001005/pdfft?md5=b088c88f4ae08c077b6c20892d34c2d8&pid=1-s2.0-S2212877824001005-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212877824001005\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212877824001005","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

目的:恶病质是一种新陈代谢障碍,也是癌症和心力衰竭的合并症。该综合征影响着全球三千多万人,占癌症死亡总数的 20%。在急性髓性白血病中,代谢酶异柠檬酸脱氢酶 1 和 2 的体细胞突变会导致产生副代谢产物 D2-羟基戊二酸(D2-HG)。D2-HG 生成的增加与心脏和骨骼肌萎缩有关,但代谢重塑和蛋白质组重塑之间的机理联系仍鲜为人知。因此,我们评估了 D2-HG 产生的新陈代谢压力如何激活自噬并导致骨骼肌萎缩:方法:我们利用 RNA 测序、质谱分析和计算模型对培养的骨骼肌细胞和 IDH 突变白血病小鼠模型的基因组、代谢组和蛋白质组变化进行了量化:结果:D2-HG损害了肌管中的NADH氧化还原平衡。NAD+ 水平的增加会驱动核去乙酰化酶 Sirt1 的活化,从而导致 LC3(自噬的一个关键调节因子)的去乙酰化和活化。利用 LC3 突变体,我们证实 Sirt1 对 LC3 的去乙酰化作用使其从细胞核分布到了细胞质,在细胞质中,LC3 可以在自噬前膜上发生脂化。Sirt1沉默或p300过表达可减轻肌管中的自噬激活。在体内,我们发现雄性小鼠和雌性小鼠的肌肉萎缩程度和握力都会因 D2-HG 而增加。在雄性小鼠中,糖酵解中间产物积累,氧化磷酸化机制的蛋白质表达减少。与此相反,雌性动物上调了相同的蛋白质,减轻了体内表型。通过网络建模和机器学习算法,我们确定了调控小鼠骨骼肌代谢适应性所必需的候选蛋白质:我们的多组学方法揭示了骨骼肌在应对 D2-HG 时新的代谢脆弱性,并为确定恶病质的治疗靶点提供了一个概念框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autophagic signaling promotes systems-wide remodeling in skeletal muscle upon oncometabolic stress by D2-HG

Objectives

Cachexia is a metabolic disorder and comorbidity with cancer and heart failure. The syndrome impacts more than thirty million people worldwide, accounting for 20% of all cancer deaths. In acute myeloid leukemia, somatic mutations of the metabolic enzyme isocitrate dehydrogenase 1 and 2 cause the production of the oncometabolite D2-hydroxyglutarate (D2-HG). Increased production of D2-HG is associated with heart and skeletal muscle atrophy, but the mechanistic links between metabolic and proteomic remodeling remain poorly understood. Therefore, we assessed how oncometabolic stress by D2-HG activates autophagy and drives skeletal muscle loss.

Methods

We quantified genomic, metabolomic, and proteomic changes in cultured skeletal muscle cells and mouse models of IDH-mutant leukemia using RNA sequencing, mass spectrometry, and computational modeling.

Results

D2-HG impairs NADH redox homeostasis in myotubes. Increased NAD+ levels drive activation of nuclear deacetylase Sirt1, which causes deacetylation and activation of LC3, a key regulator of autophagy. Using LC3 mutants, we confirm that deacetylation of LC3 by Sirt1 shifts its distribution from the nucleus into the cytosol, where it can undergo lipidation at pre-autophagic membranes. Sirt1 silencing or p300 overexpression attenuated autophagy activation in myotubes. In vivo, we identified increased muscle atrophy and reduced grip strength in response to D2-HG in male vs. female mice. In male mice, glycolytic intermediates accumulated, and protein expression of oxidative phosphorylation machinery was reduced. In contrast, female animals upregulated the same proteins, attenuating the phenotype in vivo. Network modeling and machine learning algorithms allowed us to identify candidate proteins essential for regulating oncometabolic adaptation in mouse skeletal muscle.

Conclusions

Our multi-omics approach exposes new metabolic vulnerabilities in response to D2-HG in skeletal muscle and provides a conceptual framework for identifying therapeutic targets in cachexia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Metabolism
Molecular Metabolism ENDOCRINOLOGY & METABOLISM-
CiteScore
14.50
自引率
2.50%
发文量
219
审稿时长
43 days
期刊介绍: Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction. We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.
期刊最新文献
AMPK regulates the maintenance and remodelling of the neuromuscular junction. FGF21 acts in the brain to drive macronutrient-specific changes in behavioral motivation and brain reward signaling. The immune checkpoint molecule B7-H4 regulates β-cell mass and insulin secretion by modulating cholesterol metabolism through Stat5 signalling. Senescent Cell Depletion Alleviates Obesity-related Metabolic and Cardiac Disorders. Incretin-responsive human pancreatic adipose tissue organoids: A functional model for fatty pancreas research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1