未来的气候条件会如何改变一场毁灭性的湖泊效应暴风雪?

IF 7.3 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Earths Future Pub Date : 2024-06-22 DOI:10.1029/2024EF004622
Miraj B. Kayastha, Chenfu Huang, Jiali Wang, Yun Qian, Zhao Yang, TC Chakraborty, William J. Pringle, Robert D. Hetland, Pengfei Xue
{"title":"未来的气候条件会如何改变一场毁灭性的湖泊效应暴风雪?","authors":"Miraj B. Kayastha,&nbsp;Chenfu Huang,&nbsp;Jiali Wang,&nbsp;Yun Qian,&nbsp;Zhao Yang,&nbsp;TC Chakraborty,&nbsp;William J. Pringle,&nbsp;Robert D. Hetland,&nbsp;Pengfei Xue","doi":"10.1029/2024EF004622","DOIUrl":null,"url":null,"abstract":"<p>Lake-effect snow (LES) storms, characterized by heavy convective precipitation downwind of large lakes, pose significant coastal hazards with severe socioeconomic consequences in vulnerable areas. In this study, we investigate how devastating LES storms could evolve in the future by employing a storyline approach, using the LES storm that occurred over Buffalo, New York, in November 2022 as an example. Using a Pseudo-Global Warming method with a fully three-dimensional two-way coupled lake-land-atmosphere modeling system at a cloud-resolving 4 km resolution, we show a 14% increase in storm precipitation under the end-century warming. This increase in precipitation is accompanied by a transition in the precipitation form from predominantly snowfall to nearly equal parts snowfall and rainfall. Through additional simulations with isolated atmospheric and lake warming, we discerned that the warmer lake contributes to increased storm precipitation through enhanced evaporation while the warmer atmosphere contributes to the increase in the storm's rainfall, at the expense of snowfall. More importantly, this shift from snowfall to rainfall was found to nearly double the area experiencing another winter hazard, Rain-on-Snow. Our study provides a plausible future storyline for the Buffalo LES storm, focusing on understanding the intricate interplay between atmospheric and lake warming in shaping the future dynamics of LES storms. It emphasizes the importance of accurately capturing the changing lake-atmosphere dynamics during LES storms under future warming.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004622","citationCount":"0","resultStr":"{\"title\":\"How Could Future Climate Conditions Reshape a Devastating Lake-Effect Snow Storm?\",\"authors\":\"Miraj B. Kayastha,&nbsp;Chenfu Huang,&nbsp;Jiali Wang,&nbsp;Yun Qian,&nbsp;Zhao Yang,&nbsp;TC Chakraborty,&nbsp;William J. Pringle,&nbsp;Robert D. Hetland,&nbsp;Pengfei Xue\",\"doi\":\"10.1029/2024EF004622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lake-effect snow (LES) storms, characterized by heavy convective precipitation downwind of large lakes, pose significant coastal hazards with severe socioeconomic consequences in vulnerable areas. In this study, we investigate how devastating LES storms could evolve in the future by employing a storyline approach, using the LES storm that occurred over Buffalo, New York, in November 2022 as an example. Using a Pseudo-Global Warming method with a fully three-dimensional two-way coupled lake-land-atmosphere modeling system at a cloud-resolving 4 km resolution, we show a 14% increase in storm precipitation under the end-century warming. This increase in precipitation is accompanied by a transition in the precipitation form from predominantly snowfall to nearly equal parts snowfall and rainfall. Through additional simulations with isolated atmospheric and lake warming, we discerned that the warmer lake contributes to increased storm precipitation through enhanced evaporation while the warmer atmosphere contributes to the increase in the storm's rainfall, at the expense of snowfall. More importantly, this shift from snowfall to rainfall was found to nearly double the area experiencing another winter hazard, Rain-on-Snow. Our study provides a plausible future storyline for the Buffalo LES storm, focusing on understanding the intricate interplay between atmospheric and lake warming in shaping the future dynamics of LES storms. It emphasizes the importance of accurately capturing the changing lake-atmosphere dynamics during LES storms under future warming.</p>\",\"PeriodicalId\":48748,\"journal\":{\"name\":\"Earths Future\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004622\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earths Future\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EF004622\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF004622","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

湖泊效应暴风雪(LES)的特点是在大型湖泊的下风向出现强对流降水,对沿海地区造成重大危害,给脆弱地区带来严重的社会经济后果。在本研究中,我们以 2022 年 11 月发生在纽约布法罗上空的湖效雪风暴为例,采用故事情节法研究了破坏性湖效雪风暴在未来可能如何演变。我们采用伪全球变暖方法,在云分辨率为 4 千米的全三维双向耦合湖泊-陆地-大气建模系统中显示,在本世纪末气候变暖的情况下,风暴降水量将增加 14%。降水量增加的同时,降水形式也从以降雪为主转变为降雪和降雨几乎各占一半。通过对大气和湖泊单独变暖的额外模拟,我们发现,变暖的湖泊通过增强蒸发促进了风暴降水量的增加,而变暖的大气则以降雪为代价促进了风暴降水量的增加。更重要的是,从降雪到降雨的这种转变几乎使遭遇另一种冬季灾害--"雪中雨 "的面积增加了一倍。我们的研究为水牛城 LES 风暴提供了一个可信的未来故事情节,重点是了解大气和湖泊变暖在塑造 LES 风暴未来动态方面错综复杂的相互作用。它强调了在未来气候变暖的情况下准确捕捉 LES 风暴期间湖泊-大气动态变化的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How Could Future Climate Conditions Reshape a Devastating Lake-Effect Snow Storm?

Lake-effect snow (LES) storms, characterized by heavy convective precipitation downwind of large lakes, pose significant coastal hazards with severe socioeconomic consequences in vulnerable areas. In this study, we investigate how devastating LES storms could evolve in the future by employing a storyline approach, using the LES storm that occurred over Buffalo, New York, in November 2022 as an example. Using a Pseudo-Global Warming method with a fully three-dimensional two-way coupled lake-land-atmosphere modeling system at a cloud-resolving 4 km resolution, we show a 14% increase in storm precipitation under the end-century warming. This increase in precipitation is accompanied by a transition in the precipitation form from predominantly snowfall to nearly equal parts snowfall and rainfall. Through additional simulations with isolated atmospheric and lake warming, we discerned that the warmer lake contributes to increased storm precipitation through enhanced evaporation while the warmer atmosphere contributes to the increase in the storm's rainfall, at the expense of snowfall. More importantly, this shift from snowfall to rainfall was found to nearly double the area experiencing another winter hazard, Rain-on-Snow. Our study provides a plausible future storyline for the Buffalo LES storm, focusing on understanding the intricate interplay between atmospheric and lake warming in shaping the future dynamics of LES storms. It emphasizes the importance of accurately capturing the changing lake-atmosphere dynamics during LES storms under future warming.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earths Future
Earths Future ENVIRONMENTAL SCIENCESGEOSCIENCES, MULTIDI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
11.00
自引率
7.30%
发文量
260
审稿时长
16 weeks
期刊介绍: Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.
期刊最新文献
Issue Information Projected Increasing Negative Impact of Extreme Events on Gross Primary Productivity During the 21st Century in CMIP6 Models Quantifying Global Wetland Methane Emissions With In Situ Methane Flux Data and Machine Learning Approaches Integrating Values to Improve the Relevance of Climate-Risk Research Blue Carbon Assessment in the Salt Marshes of the Venice Lagoon: Dimensions, Variability and Influence of Storm-Surge Regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1