原核 RNA N1-甲基腺苷清除剂可维持委内瑞拉链霉菌中 tRNA m1A 的修饰水平。

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Biology Pub Date : 2024-06-24 DOI:10.1021/acschembio.4c00278
Marcus Foo, Luke R Frietze, Behnam Enghiad, Yujie Yuan, Christopher D Katanski, Huimin Zhao, Tao Pan
{"title":"原核 RNA N1-甲基腺苷清除剂可维持委内瑞拉链霉菌中 tRNA m1A 的修饰水平。","authors":"Marcus Foo, Luke R Frietze, Behnam Enghiad, Yujie Yuan, Christopher D Katanski, Huimin Zhao, Tao Pan","doi":"10.1021/acschembio.4c00278","DOIUrl":null,"url":null,"abstract":"<p><p>tRNA modifications help maintain tRNA structure and facilitate translation and stress response. Found in all three kingdoms of life, m<sup>1</sup>A tRNA modification occurs in the T loop of many tRNAs, stabilizes tertiary tRNA structure, and impacts translation. M<sup>1</sup>A in the T loop is reversible by three mammalian demethylase enzymes, which bypasses the need of turning over the tRNA molecule to adjust its m<sup>1</sup>A levels in cells. However, no prokaryotic tRNA demethylase enzyme has been identified that acts on endogenous RNA modifications. Using <i>Streptomyces venezuelae</i> as a model organism, we confirmed the presence and quantitative m<sup>1</sup>A tRNA signatures using mass spectrometry and high-throughput tRNA sequencing. We identified two RNA demethylases that can remove m<sup>1</sup>A in tRNA and validated the activity of a previously annotated tRNA m<sup>1</sup>A writer. Using single-gene knockouts of these erasers and the m<sup>1</sup>A writer, we found dynamic changes of m<sup>1</sup>A levels in many tRNAs under stress conditions. Phenotypic characterization highlighted changes in their growth and altered antibiotic production. Our identification of the first prokaryotic tRNA demethylase enzyme paves the way for investigating new mechanisms of translational regulation in bacteria.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prokaryotic RNA N1-Methyladenosine Erasers Maintain tRNA m1A Modification Levels in <i>Streptomyces venezuelae</i>.\",\"authors\":\"Marcus Foo, Luke R Frietze, Behnam Enghiad, Yujie Yuan, Christopher D Katanski, Huimin Zhao, Tao Pan\",\"doi\":\"10.1021/acschembio.4c00278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>tRNA modifications help maintain tRNA structure and facilitate translation and stress response. Found in all three kingdoms of life, m<sup>1</sup>A tRNA modification occurs in the T loop of many tRNAs, stabilizes tertiary tRNA structure, and impacts translation. M<sup>1</sup>A in the T loop is reversible by three mammalian demethylase enzymes, which bypasses the need of turning over the tRNA molecule to adjust its m<sup>1</sup>A levels in cells. However, no prokaryotic tRNA demethylase enzyme has been identified that acts on endogenous RNA modifications. Using <i>Streptomyces venezuelae</i> as a model organism, we confirmed the presence and quantitative m<sup>1</sup>A tRNA signatures using mass spectrometry and high-throughput tRNA sequencing. We identified two RNA demethylases that can remove m<sup>1</sup>A in tRNA and validated the activity of a previously annotated tRNA m<sup>1</sup>A writer. Using single-gene knockouts of these erasers and the m<sup>1</sup>A writer, we found dynamic changes of m<sup>1</sup>A levels in many tRNAs under stress conditions. Phenotypic characterization highlighted changes in their growth and altered antibiotic production. Our identification of the first prokaryotic tRNA demethylase enzyme paves the way for investigating new mechanisms of translational regulation in bacteria.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acschembio.4c00278\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00278","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

tRNA 修饰有助于维持 tRNA 结构,促进翻译和应激反应。m1A tRNA 修饰存在于所有三个生命界,发生在许多 tRNA 的 T 环中,可稳定 tRNA 的三级结构并影响翻译。哺乳动物体内的三种去甲基化酶可逆转 T 环中的 M1A,从而绕过了翻转 tRNA 分子以调整其在细胞中的 m1A 水平的需要。然而,目前还没有发现原核生物的 tRNA 去甲基化酶能作用于内源性 RNA 修饰。我们以委内瑞拉链霉菌(Streptomyces venezuelae)为模式生物,利用质谱法和高通量 tRNA 测序技术确认了 m1A tRNA 的存在和定量特征。我们发现了两种可以去除 tRNA 中 m1A 的 RNA 去甲基化酶,并验证了以前注释的 tRNA m1A 写入器的活性。利用这些去甲基化酶和 m1A 写入器的单基因敲除,我们发现在压力条件下,许多 tRNA 中的 m1A 水平发生了动态变化。表型特征突显了它们生长的变化和抗生素生产的改变。我们发现的首个原核生物 tRNA 去甲基化酶为研究细菌翻译调控的新机制铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prokaryotic RNA N1-Methyladenosine Erasers Maintain tRNA m1A Modification Levels in Streptomyces venezuelae.

tRNA modifications help maintain tRNA structure and facilitate translation and stress response. Found in all three kingdoms of life, m1A tRNA modification occurs in the T loop of many tRNAs, stabilizes tertiary tRNA structure, and impacts translation. M1A in the T loop is reversible by three mammalian demethylase enzymes, which bypasses the need of turning over the tRNA molecule to adjust its m1A levels in cells. However, no prokaryotic tRNA demethylase enzyme has been identified that acts on endogenous RNA modifications. Using Streptomyces venezuelae as a model organism, we confirmed the presence and quantitative m1A tRNA signatures using mass spectrometry and high-throughput tRNA sequencing. We identified two RNA demethylases that can remove m1A in tRNA and validated the activity of a previously annotated tRNA m1A writer. Using single-gene knockouts of these erasers and the m1A writer, we found dynamic changes of m1A levels in many tRNAs under stress conditions. Phenotypic characterization highlighted changes in their growth and altered antibiotic production. Our identification of the first prokaryotic tRNA demethylase enzyme paves the way for investigating new mechanisms of translational regulation in bacteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
期刊最新文献
Quantitative Measurement of Rate of Targeted Protein Degradation. A Repurposed Drug Interferes with Nucleic Acid to Inhibit the Dual Activities of Coronavirus Nsp13. Glutathione-Based Photoaffinity Probe Identifies Caffeine as a Positive Allosteric Modulator of the Calcium-Sensing Receptor. Confounding Factors in Targeted Degradation of Short-Lived Proteins. ALTering Cancer by Triggering Telomere Replication Stress through the Stabilization of Promoter G-Quadruplex in SMARCAL1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1