研究基于硼酸盐亲和力的定向印迹二氧化硅纳米粒子的创建及其对食品和水中糖肽类抗生素的选择性识别。

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL Analytical Methods Pub Date : 2024-06-13 DOI:10.1039/D4AY00884G
Dongfeng Hong, Caijian Nie, Liujing Gao and Yifan Liu
{"title":"研究基于硼酸盐亲和力的定向印迹二氧化硅纳米粒子的创建及其对食品和水中糖肽类抗生素的选择性识别。","authors":"Dongfeng Hong, Caijian Nie, Liujing Gao and Yifan Liu","doi":"10.1039/D4AY00884G","DOIUrl":null,"url":null,"abstract":"<p >Taking into account the drug resistance of antibiotics, teicoplanin has been banned in the veterinary field. Also, it brings threat to people's health when they eat foods containing teicoplanin residue. In addition, the abuse of teicoplanin in humans and food animals also poses a potential risk to water. Therefore, it is crucial to purify teicoplanin from food before quantifying its amount. In this study, researchers employed boronate affinity-based controlled oriented surface imprinting technique to produce molecularly imprinted polymers (MIPs) for the isolation of teicoplanin. The 3-fluoro-4-formylphenylboronic acid-functionalized silica nanoparticle substrate was first used as the supporting material for immobilizing teicoplanin. Next, the substrate surface was coated with an imprinting coating whose thickness could be controlled, produced through the self-copolymerization of dopamine and <em>m</em>-aminophenylboronic acid (APBA) in water. After the template was removed, 3D cavities that matched the template were created in the imprinting layer. The prepared teicoplanin-imprinted silica nanoparticles exhibited several significant satisfactory results such as good specificity, high binding capacity (46.9 ± 2.3 mg g<small><sup>−1</sup></small>), moderate binding constant ((5.46 ± 0.18) × 10<small><sup>−5</sup></small> M<small><sup>−1</sup></small>), fast kinetics (8 min) and low binding pH (pH 5.0) toward teicoplanin. The teicoplanin-imprinted silica nanoparticles could still be reused after seven cycles of adsorption–desorption, which indicated a high chemical stability. In addition, recoveries of the proposed method for teicoplanin at three spiked levels in milk and water ranged from 91.8 to 105.6% and 92.3 to 97.4%, respectively. The teicoplanin-imprinted silica nanoparticles are capable of identifying the target teicoplanin in real samples in a simple, fast, selective and efficient manner.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the creation of boronate affinity-based oriented imprinted silica nanoparticles and their selective recognition toward glycopeptide antibiotics in food and water\",\"authors\":\"Dongfeng Hong, Caijian Nie, Liujing Gao and Yifan Liu\",\"doi\":\"10.1039/D4AY00884G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Taking into account the drug resistance of antibiotics, teicoplanin has been banned in the veterinary field. Also, it brings threat to people's health when they eat foods containing teicoplanin residue. In addition, the abuse of teicoplanin in humans and food animals also poses a potential risk to water. Therefore, it is crucial to purify teicoplanin from food before quantifying its amount. In this study, researchers employed boronate affinity-based controlled oriented surface imprinting technique to produce molecularly imprinted polymers (MIPs) for the isolation of teicoplanin. The 3-fluoro-4-formylphenylboronic acid-functionalized silica nanoparticle substrate was first used as the supporting material for immobilizing teicoplanin. Next, the substrate surface was coated with an imprinting coating whose thickness could be controlled, produced through the self-copolymerization of dopamine and <em>m</em>-aminophenylboronic acid (APBA) in water. After the template was removed, 3D cavities that matched the template were created in the imprinting layer. The prepared teicoplanin-imprinted silica nanoparticles exhibited several significant satisfactory results such as good specificity, high binding capacity (46.9 ± 2.3 mg g<small><sup>−1</sup></small>), moderate binding constant ((5.46 ± 0.18) × 10<small><sup>−5</sup></small> M<small><sup>−1</sup></small>), fast kinetics (8 min) and low binding pH (pH 5.0) toward teicoplanin. The teicoplanin-imprinted silica nanoparticles could still be reused after seven cycles of adsorption–desorption, which indicated a high chemical stability. In addition, recoveries of the proposed method for teicoplanin at three spiked levels in milk and water ranged from 91.8 to 105.6% and 92.3 to 97.4%, respectively. The teicoplanin-imprinted silica nanoparticles are capable of identifying the target teicoplanin in real samples in a simple, fast, selective and efficient manner.</p>\",\"PeriodicalId\":64,\"journal\":{\"name\":\"Analytical Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Methods\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ay/d4ay00884g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ay/d4ay00884g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

考虑到抗生素的耐药性,兽医领域已禁止使用替考拉宁。同时,人们食用含有替考拉宁残留物的食品也会对健康造成威胁。此外,人类和食用动物滥用替考拉宁也会对水造成潜在风险。因此,在量化食物中的替考拉宁含量之前,净化食物中的替考拉宁至关重要。在这项研究中,研究人员采用了基于硼酸盐亲和力的可控定向表面印迹技术,制备出分子印迹聚合物(MIPs),用于分离替考拉宁。首先将 3-氟-4-甲酰基苯硼酸官能化的二氧化硅纳米颗粒基底作为固定替考拉宁的支撑材料。然后,在基底表面涂上一层厚度可控的压印涂层,该涂层是由多巴胺和间氨基苯硼酸(APBA)在水中自聚而成的。移除模板后,在压印层上形成与模板相匹配的三维空腔。所制备的茶氯普宁印迹二氧化硅纳米粒子具有良好的特异性、较高的结合能力(46.9 ± 2.3 mg g-1)、适中的结合常数((5.46 ± 0.18) × 10-5 M-1)、快速的动力学(8 分钟)和较低的茶氯普宁结合 pH 值(pH 5.0)。经过 7 次吸附-解吸循环后,茶碱印迹二氧化硅纳米颗粒仍可重复使用,这表明其具有很高的化学稳定性。此外,该方法对牛奶和水中三种添加水平的替考拉宁的回收率分别为91.8%至105.6%和92.3%至97.4%。该方法简便、快速、选择性强、效率高,能够鉴定真实样品中的目标替考拉宁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the creation of boronate affinity-based oriented imprinted silica nanoparticles and their selective recognition toward glycopeptide antibiotics in food and water

Taking into account the drug resistance of antibiotics, teicoplanin has been banned in the veterinary field. Also, it brings threat to people's health when they eat foods containing teicoplanin residue. In addition, the abuse of teicoplanin in humans and food animals also poses a potential risk to water. Therefore, it is crucial to purify teicoplanin from food before quantifying its amount. In this study, researchers employed boronate affinity-based controlled oriented surface imprinting technique to produce molecularly imprinted polymers (MIPs) for the isolation of teicoplanin. The 3-fluoro-4-formylphenylboronic acid-functionalized silica nanoparticle substrate was first used as the supporting material for immobilizing teicoplanin. Next, the substrate surface was coated with an imprinting coating whose thickness could be controlled, produced through the self-copolymerization of dopamine and m-aminophenylboronic acid (APBA) in water. After the template was removed, 3D cavities that matched the template were created in the imprinting layer. The prepared teicoplanin-imprinted silica nanoparticles exhibited several significant satisfactory results such as good specificity, high binding capacity (46.9 ± 2.3 mg g−1), moderate binding constant ((5.46 ± 0.18) × 10−5 M−1), fast kinetics (8 min) and low binding pH (pH 5.0) toward teicoplanin. The teicoplanin-imprinted silica nanoparticles could still be reused after seven cycles of adsorption–desorption, which indicated a high chemical stability. In addition, recoveries of the proposed method for teicoplanin at three spiked levels in milk and water ranged from 91.8 to 105.6% and 92.3 to 97.4%, respectively. The teicoplanin-imprinted silica nanoparticles are capable of identifying the target teicoplanin in real samples in a simple, fast, selective and efficient manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
期刊最新文献
A porphyrin-modified CoMoO4 nanosensor array for the detection of crude baijiu. Combined detection of hepatitis B virus surface antigen and hepatitis B virus DNA using a DNA sensor. Correction: Selective fluorescence detection of acetylsalicylic acid, succinic acid and ascorbic acid based on a responsive lanthanide metal fluorescent coordination polymer. Fruit waste-derived carbon dots with rhodamine B for the ratiometric detection of Fe3+ and Cu2. Rational design of monodispersed Au@Pt core-shell nanostructures with excellent peroxidase-mimicking activity for colorimetric detection of Cr(VI).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1