Tammera Karr, Leena S Guptha, Kathleen Bell, Julie Thenell
{"title":"草酸盐膳食中的草酸盐与肾脏炎症:文献综述。","authors":"Tammera Karr, Leena S Guptha, Kathleen Bell, Julie Thenell","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This literature review explores the role of dietary oxalate in the development of chronic inflammatory kidney disease in middle-aged and older individuals. The authors pose the following questions: Is oxalate produced endogenously? If food sources contribute to chronic kidney disease and inflammation, what are those foods? What role do cultural food preparation and cooking play in denaturing food oxalates? The concentration of oxalates found within the body at any particular time is not limited to edible plants; normal human metabolic processes of breaking down ascorbic acid may create up to 30 mg of oxalate daily. Research supports urolithiasis as a common urologic disease in industrialized societies. Approximately 80% of kidney stones are composed of calcium oxalate, resulting in hyperoxaluria. Exogenous (originating outside the cell or organism) oxalate sources include ascorbic acid, amino acids, and glyoxal metabolism. Additional research estimates the daily endogenous (produced within the cell or organism) production of oxalate to be 10-25 mg. Suboptimal colonization of oxalate-degrading bacteria and malabsorptive disease are also contributing factors to the development of chronic kidney disease. Oxalate transcellular processes, though poorly understood, rely on multifunctional anion exchangers, and are currently being investigated. A review of research showed that normal human metabolic processes, including the breakdown of ascorbic acid, account for 35-55% of circulating oxalates and can create ≤30 mg of circulating serum oxalate daily. Glyoxylic acid accounts for 50-70% of circulating urinary oxalate in compromised individuals with liver glycation, bacterial insufficiencies, malabsorption, and anion exchange challenges. For persons with a family history of kidney stones, consumption of foods high in oxalates may be consumed in moderation, provided there is adequate calcium intake in the diet to decrease the absorption of oxalates from the meal ingested.</p>","PeriodicalId":13593,"journal":{"name":"Integrative medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193404/pdf/","citationCount":"0","resultStr":"{\"title\":\"Oxalates: Dietary Oxalates and Kidney Inflammation: A Literature Review.\",\"authors\":\"Tammera Karr, Leena S Guptha, Kathleen Bell, Julie Thenell\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This literature review explores the role of dietary oxalate in the development of chronic inflammatory kidney disease in middle-aged and older individuals. The authors pose the following questions: Is oxalate produced endogenously? If food sources contribute to chronic kidney disease and inflammation, what are those foods? What role do cultural food preparation and cooking play in denaturing food oxalates? The concentration of oxalates found within the body at any particular time is not limited to edible plants; normal human metabolic processes of breaking down ascorbic acid may create up to 30 mg of oxalate daily. Research supports urolithiasis as a common urologic disease in industrialized societies. Approximately 80% of kidney stones are composed of calcium oxalate, resulting in hyperoxaluria. Exogenous (originating outside the cell or organism) oxalate sources include ascorbic acid, amino acids, and glyoxal metabolism. Additional research estimates the daily endogenous (produced within the cell or organism) production of oxalate to be 10-25 mg. Suboptimal colonization of oxalate-degrading bacteria and malabsorptive disease are also contributing factors to the development of chronic kidney disease. Oxalate transcellular processes, though poorly understood, rely on multifunctional anion exchangers, and are currently being investigated. A review of research showed that normal human metabolic processes, including the breakdown of ascorbic acid, account for 35-55% of circulating oxalates and can create ≤30 mg of circulating serum oxalate daily. Glyoxylic acid accounts for 50-70% of circulating urinary oxalate in compromised individuals with liver glycation, bacterial insufficiencies, malabsorption, and anion exchange challenges. For persons with a family history of kidney stones, consumption of foods high in oxalates may be consumed in moderation, provided there is adequate calcium intake in the diet to decrease the absorption of oxalates from the meal ingested.</p>\",\"PeriodicalId\":13593,\"journal\":{\"name\":\"Integrative medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193404/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative medicine","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Oxalates: Dietary Oxalates and Kidney Inflammation: A Literature Review.
This literature review explores the role of dietary oxalate in the development of chronic inflammatory kidney disease in middle-aged and older individuals. The authors pose the following questions: Is oxalate produced endogenously? If food sources contribute to chronic kidney disease and inflammation, what are those foods? What role do cultural food preparation and cooking play in denaturing food oxalates? The concentration of oxalates found within the body at any particular time is not limited to edible plants; normal human metabolic processes of breaking down ascorbic acid may create up to 30 mg of oxalate daily. Research supports urolithiasis as a common urologic disease in industrialized societies. Approximately 80% of kidney stones are composed of calcium oxalate, resulting in hyperoxaluria. Exogenous (originating outside the cell or organism) oxalate sources include ascorbic acid, amino acids, and glyoxal metabolism. Additional research estimates the daily endogenous (produced within the cell or organism) production of oxalate to be 10-25 mg. Suboptimal colonization of oxalate-degrading bacteria and malabsorptive disease are also contributing factors to the development of chronic kidney disease. Oxalate transcellular processes, though poorly understood, rely on multifunctional anion exchangers, and are currently being investigated. A review of research showed that normal human metabolic processes, including the breakdown of ascorbic acid, account for 35-55% of circulating oxalates and can create ≤30 mg of circulating serum oxalate daily. Glyoxylic acid accounts for 50-70% of circulating urinary oxalate in compromised individuals with liver glycation, bacterial insufficiencies, malabsorption, and anion exchange challenges. For persons with a family history of kidney stones, consumption of foods high in oxalates may be consumed in moderation, provided there is adequate calcium intake in the diet to decrease the absorption of oxalates from the meal ingested.