对抗超级细菌的创新战略:开发用于精确治疗嗜麦芽单胞菌的人工智能-CDSS。

IF 3.7 3区 医学 Q2 INFECTIOUS DISEASES Journal of global antimicrobial resistance Pub Date : 2024-06-22 DOI:10.1016/j.jgar.2024.06.004
{"title":"对抗超级细菌的创新战略:开发用于精确治疗嗜麦芽单胞菌的人工智能-CDSS。","authors":"","doi":"10.1016/j.jgar.2024.06.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>The World Health Organization <em>named Stenotrophomonas maltophilia</em> (SM) a critical multi-drug resistant threat, necessitating rapid diagnostic strategies. Traditional culturing methods require up to 96 h, including 72 h for bacterial growth, identification with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) through protein profile analysis, and 24 h for antibiotic susceptibility testing. In this study, we aimed at developing an artificial intelligence-clinical decision support system (AI-CDSS) by integrating MALDI-TOF MS and machine learning to quickly identify levofloxacin and trimethoprim/sulfamethoxazole resistance in SM, optimizing treatment decisions.</p></div><div><h3>Methods</h3><p>We selected 8,662 SM from 165,299 MALDI-TOF MS-analysed bacterial specimens, collected from a major medical centre and four secondary hospitals. We exported mass-to-charge values and intensity spectral profiles from MALDI-TOF MS .mzML files to predict antibiotic susceptibility testing results, obtained with the VITEK-2 system using machine learning algorithms. We optimized the models with GridSearchCV and 5-fold cross-validation.</p></div><div><h3>Results</h3><p>We identified distinct spectral differences between resistant and susceptible SM strains, demonstrating crucial resistance features. The machine learning models, including random forest, light-gradient boosting machine, and XGBoost, exhibited high accuracy. We established an AI-CDSS to offer healthcare professionals swift, data-driven advice on antibiotic use.</p></div><div><h3>Conclusions</h3><p>MALDI-TOF MS and machine learning integration into an AI-CDSS significantly improved rapid SM resistance detection. This system reduced the identification time of resistant strains from 24 h to minutes after MALDI-TOF MS identification, providing timely and data-driven guidance. Combining MALDI-TOF MS with machine learning could enhance clinical decision-making and improve SM infection treatment outcomes.</p></div>","PeriodicalId":15936,"journal":{"name":"Journal of global antimicrobial resistance","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213716524001139/pdfft?md5=6f8ab4db3e8e5f4719e61107d8ebd613&pid=1-s2.0-S2213716524001139-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Innovative strategies against superbugs: Developing an AI-CDSS for precise Stenotrophomonas maltophilia treatment\",\"authors\":\"\",\"doi\":\"10.1016/j.jgar.2024.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p>The World Health Organization <em>named Stenotrophomonas maltophilia</em> (SM) a critical multi-drug resistant threat, necessitating rapid diagnostic strategies. Traditional culturing methods require up to 96 h, including 72 h for bacterial growth, identification with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) through protein profile analysis, and 24 h for antibiotic susceptibility testing. In this study, we aimed at developing an artificial intelligence-clinical decision support system (AI-CDSS) by integrating MALDI-TOF MS and machine learning to quickly identify levofloxacin and trimethoprim/sulfamethoxazole resistance in SM, optimizing treatment decisions.</p></div><div><h3>Methods</h3><p>We selected 8,662 SM from 165,299 MALDI-TOF MS-analysed bacterial specimens, collected from a major medical centre and four secondary hospitals. We exported mass-to-charge values and intensity spectral profiles from MALDI-TOF MS .mzML files to predict antibiotic susceptibility testing results, obtained with the VITEK-2 system using machine learning algorithms. We optimized the models with GridSearchCV and 5-fold cross-validation.</p></div><div><h3>Results</h3><p>We identified distinct spectral differences between resistant and susceptible SM strains, demonstrating crucial resistance features. The machine learning models, including random forest, light-gradient boosting machine, and XGBoost, exhibited high accuracy. We established an AI-CDSS to offer healthcare professionals swift, data-driven advice on antibiotic use.</p></div><div><h3>Conclusions</h3><p>MALDI-TOF MS and machine learning integration into an AI-CDSS significantly improved rapid SM resistance detection. This system reduced the identification time of resistant strains from 24 h to minutes after MALDI-TOF MS identification, providing timely and data-driven guidance. Combining MALDI-TOF MS with machine learning could enhance clinical decision-making and improve SM infection treatment outcomes.</p></div>\",\"PeriodicalId\":15936,\"journal\":{\"name\":\"Journal of global antimicrobial resistance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213716524001139/pdfft?md5=6f8ab4db3e8e5f4719e61107d8ebd613&pid=1-s2.0-S2213716524001139-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of global antimicrobial resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213716524001139\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of global antimicrobial resistance","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213716524001139","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

目的:世界卫生组织(WHO)将嗜麦芽糖血单胞菌(Stenotrophomonas maltophilia)命名为严重的多重耐药性威胁,因此有必要采取快速诊断策略。传统的培养方法需要长达 96 小时的时间,其中包括 72 小时的细菌生长时间、通过蛋白质图谱分析进行基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)鉴定,以及 24 小时的抗生素药敏试验。在本研究中,我们旨在通过整合 MALDI-TOF MS 和机器学习,开发一种人工智能-临床决策支持系统(AI-CDSS),以快速识别嗜麦芽糖酵母菌对左氧氟沙星和三甲双氨/磺胺甲恶唑的耐药性,优化治疗决策:我们从一家大型医疗中心和四家二级医院收集的 165299 份经 MALDI-TOF MS 分析的细菌标本中筛选出 8662 份嗜麦芽糖浆菌。我们从 MALDI-TOF MS .mzML 文件中导出质量电荷值和强度谱图,利用机器学习算法预测 VITEK-2 系统获得的抗生素药敏试验结果。我们利用 GridSearchCV 和 5 倍交叉验证对模型进行了优化:结果:我们确定了耐药和易感嗜麦芽糖酵母菌株之间明显的光谱差异,显示了关键的耐药性特征。包括随机森林、光梯度提升机和 XGBoost 在内的机器学习模型表现出很高的准确性。我们建立了一个人工智能CDSS,为医疗保健专业人员提供快速、数据驱动的抗生素使用建议:结论:将 MALDI-TOF MS 和机器学习整合到 AI-CDSS 中,可显著提高嗜麦芽糖酵母菌耐药性的快速检测能力。该系统将耐药菌株的鉴定时间从 MALDI-TOF MS 鉴定后的 24 小时缩短至几分钟,提供了及时和数据驱动的指导。将MALDI-TOF MS与机器学习相结合可提高临床决策水平,改善嗜麦芽糖病菌感染的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Innovative strategies against superbugs: Developing an AI-CDSS for precise Stenotrophomonas maltophilia treatment

Objectives

The World Health Organization named Stenotrophomonas maltophilia (SM) a critical multi-drug resistant threat, necessitating rapid diagnostic strategies. Traditional culturing methods require up to 96 h, including 72 h for bacterial growth, identification with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) through protein profile analysis, and 24 h for antibiotic susceptibility testing. In this study, we aimed at developing an artificial intelligence-clinical decision support system (AI-CDSS) by integrating MALDI-TOF MS and machine learning to quickly identify levofloxacin and trimethoprim/sulfamethoxazole resistance in SM, optimizing treatment decisions.

Methods

We selected 8,662 SM from 165,299 MALDI-TOF MS-analysed bacterial specimens, collected from a major medical centre and four secondary hospitals. We exported mass-to-charge values and intensity spectral profiles from MALDI-TOF MS .mzML files to predict antibiotic susceptibility testing results, obtained with the VITEK-2 system using machine learning algorithms. We optimized the models with GridSearchCV and 5-fold cross-validation.

Results

We identified distinct spectral differences between resistant and susceptible SM strains, demonstrating crucial resistance features. The machine learning models, including random forest, light-gradient boosting machine, and XGBoost, exhibited high accuracy. We established an AI-CDSS to offer healthcare professionals swift, data-driven advice on antibiotic use.

Conclusions

MALDI-TOF MS and machine learning integration into an AI-CDSS significantly improved rapid SM resistance detection. This system reduced the identification time of resistant strains from 24 h to minutes after MALDI-TOF MS identification, providing timely and data-driven guidance. Combining MALDI-TOF MS with machine learning could enhance clinical decision-making and improve SM infection treatment outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of global antimicrobial resistance
Journal of global antimicrobial resistance INFECTIOUS DISEASES-PHARMACOLOGY & PHARMACY
CiteScore
8.70
自引率
2.20%
发文量
285
审稿时长
34 weeks
期刊介绍: The Journal of Global Antimicrobial Resistance (JGAR) is a quarterly online journal run by an international Editorial Board that focuses on the global spread of antibiotic-resistant microbes. JGAR is a dedicated journal for all professionals working in research, health care, the environment and animal infection control, aiming to track the resistance threat worldwide and provides a single voice devoted to antimicrobial resistance (AMR). Featuring peer-reviewed and up to date research articles, reviews, short notes and hot topics JGAR covers the key topics related to antibacterial, antiviral, antifungal and antiparasitic resistance.
期刊最新文献
Refining the gut colonization Zophobas morio larvae model using an oral administration of multidrug-resistant Escherichia coli. From Forgotten Cure to Modern Medicine: The Resurgence of Bacteriophage Therapy. Rapid immunochromatographic detection of carbapenemases directly from positive blood cultures in patients colonized by carbapenemase-producing bacteria. Study of the mechanisms of heteroresistance to colistin in a strain of Enterobacter cloacae by random mutagenesis. Integral genomic description of blaNDM-5-harbouring plasmids recovered from Enterobacterales in Argentina.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1