被冷落:超越激素疗法,利用 CAR T 细胞免疫疗法治疗免疫冷感型前列腺癌。

IF 2.7 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Steroid Biochemistry and Molecular Biology Pub Date : 2024-06-22 DOI:10.1016/j.jsbmb.2024.106571
L.H. Porter , S.G. Harrison , G.P. Risbridger , Natalie Lister , R.A. Taylor
{"title":"被冷落:超越激素疗法,利用 CAR T 细胞免疫疗法治疗免疫冷感型前列腺癌。","authors":"L.H. Porter ,&nbsp;S.G. Harrison ,&nbsp;G.P. Risbridger ,&nbsp;Natalie Lister ,&nbsp;R.A. Taylor","doi":"10.1016/j.jsbmb.2024.106571","DOIUrl":null,"url":null,"abstract":"<div><p>Prostate cancer is primarily hormone-dependent, and medical treatments have focused on inhibiting androgen biosynthesis or signaling through various approaches. Despite significant advances with the introduction of androgen receptor signalling inhibitors (ARSIs), patients continue to progress to castration-resistant prostate cancer (CRPC), highlighting the need for targeted therapies that extend beyond hormonal blockade. Chimeric Antigen Receptor (CAR) T cells and other engineered immune cells represent a new generation of adoptive cellular therapies. While these therapies have significantly enhanced outcomes for patients with hematological malignancies, ongoing research is exploring the broader use of CAR T therapy in solid tumors, including advanced prostate cancer. In general, CAR T cell therapies are less effective against solid cancers with the immunosuppressive tumor microenvironment hindering T cell infiltration, activation and cytotoxicity following antigen recognition. In addition, inherent tumor heterogeneity exists in patients with advanced prostate cancer that may prevent durable therapeutic responses using single-target agents. These barriers must be overcome to inform clinical trial design and improve treatment efficacy. In this review, we discuss the innovative and rationally designed strategies under investigation to improve the clinical translation of cellular immunotherapy in prostate cancer and maximise therapeutic outcomes for these patients.</p></div>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":"243 ","pages":"Article 106571"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960076024001195/pdfft?md5=459c6f17f0f0050f252bbe34be69d80f&pid=1-s2.0-S0960076024001195-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Left out in the cold: Moving beyond hormonal therapy for the treatment of immunologically cold prostate cancer with CAR T cell immunotherapies\",\"authors\":\"L.H. Porter ,&nbsp;S.G. Harrison ,&nbsp;G.P. Risbridger ,&nbsp;Natalie Lister ,&nbsp;R.A. Taylor\",\"doi\":\"10.1016/j.jsbmb.2024.106571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Prostate cancer is primarily hormone-dependent, and medical treatments have focused on inhibiting androgen biosynthesis or signaling through various approaches. Despite significant advances with the introduction of androgen receptor signalling inhibitors (ARSIs), patients continue to progress to castration-resistant prostate cancer (CRPC), highlighting the need for targeted therapies that extend beyond hormonal blockade. Chimeric Antigen Receptor (CAR) T cells and other engineered immune cells represent a new generation of adoptive cellular therapies. While these therapies have significantly enhanced outcomes for patients with hematological malignancies, ongoing research is exploring the broader use of CAR T therapy in solid tumors, including advanced prostate cancer. In general, CAR T cell therapies are less effective against solid cancers with the immunosuppressive tumor microenvironment hindering T cell infiltration, activation and cytotoxicity following antigen recognition. In addition, inherent tumor heterogeneity exists in patients with advanced prostate cancer that may prevent durable therapeutic responses using single-target agents. These barriers must be overcome to inform clinical trial design and improve treatment efficacy. In this review, we discuss the innovative and rationally designed strategies under investigation to improve the clinical translation of cellular immunotherapy in prostate cancer and maximise therapeutic outcomes for these patients.</p></div>\",\"PeriodicalId\":51106,\"journal\":{\"name\":\"Journal of Steroid Biochemistry and Molecular Biology\",\"volume\":\"243 \",\"pages\":\"Article 106571\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0960076024001195/pdfft?md5=459c6f17f0f0050f252bbe34be69d80f&pid=1-s2.0-S0960076024001195-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Steroid Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960076024001195\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Steroid Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960076024001195","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

前列腺癌主要是激素依赖性前列腺癌,医学治疗的重点是通过各种方法抑制雄激素的生物合成或信号传导。尽管随着雄激素受体信号抑制剂(ARSIs)的问世取得了重大进展,但患者仍会发展为阉割耐药前列腺癌(CRPC),这凸显了对激素阻断之外的靶向疗法的需求。嵌合抗原受体(CAR)T细胞和其他工程免疫细胞代表了新一代的领养细胞疗法。虽然这些疗法大大提高了血液恶性肿瘤患者的治疗效果,但目前的研究正在探索如何在包括晚期前列腺癌在内的实体瘤中更广泛地使用 CAR T 疗法。一般来说,CAR T 细胞疗法对实体瘤的疗效较差,因为免疫抑制性肿瘤微环境会阻碍抗原识别后 T 细胞的浸润、活化和细胞毒性。此外,晚期前列腺癌患者体内存在固有的肿瘤异质性,这可能会妨碍使用单靶点药物产生持久的治疗反应。必须克服这些障碍,才能为临床试验设计提供依据并提高疗效。在这篇综述中,我们将讨论正在研究的创新和合理设计策略,以改善细胞免疫疗法在前列腺癌中的临床转化,并最大限度地提高这些患者的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Left out in the cold: Moving beyond hormonal therapy for the treatment of immunologically cold prostate cancer with CAR T cell immunotherapies

Prostate cancer is primarily hormone-dependent, and medical treatments have focused on inhibiting androgen biosynthesis or signaling through various approaches. Despite significant advances with the introduction of androgen receptor signalling inhibitors (ARSIs), patients continue to progress to castration-resistant prostate cancer (CRPC), highlighting the need for targeted therapies that extend beyond hormonal blockade. Chimeric Antigen Receptor (CAR) T cells and other engineered immune cells represent a new generation of adoptive cellular therapies. While these therapies have significantly enhanced outcomes for patients with hematological malignancies, ongoing research is exploring the broader use of CAR T therapy in solid tumors, including advanced prostate cancer. In general, CAR T cell therapies are less effective against solid cancers with the immunosuppressive tumor microenvironment hindering T cell infiltration, activation and cytotoxicity following antigen recognition. In addition, inherent tumor heterogeneity exists in patients with advanced prostate cancer that may prevent durable therapeutic responses using single-target agents. These barriers must be overcome to inform clinical trial design and improve treatment efficacy. In this review, we discuss the innovative and rationally designed strategies under investigation to improve the clinical translation of cellular immunotherapy in prostate cancer and maximise therapeutic outcomes for these patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
2.40%
发文量
113
审稿时长
46 days
期刊介绍: The Journal of Steroid Biochemistry and Molecular Biology is devoted to new experimental and theoretical developments in areas related to steroids including vitamin D, lipids and their metabolomics. The Journal publishes a variety of contributions, including original articles, general and focused reviews, and rapid communications (brief articles of particular interest and clear novelty). Selected cutting-edge topics will be addressed in Special Issues managed by Guest Editors. Special Issues will contain both commissioned reviews and original research papers to provide comprehensive coverage of specific topics, and all submissions will undergo rigorous peer-review prior to publication.
期刊最新文献
The CaCo-2 cell junction derangement exerted by the single addition of oxysterols commonly detected in foods is markedly quenched when they are in mixture. The determination of endogenous steroids in hair and fur: A systematic review of methodologies. Drug repurposing opportunities for breast cancer and seven common subtypes. Low progesterone levels and their role in the co-existence of polycystic ovary syndrome and rheumatoid arthritis: a comprehensive analysis among Iraqi patient. Signaling crosstalk of Galectin-3, β-catenin, and estrogen receptor in androgen-independent prostate cancer DU-145 cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1