{"title":"温度升高、盐度降低和微纤维对东部牡蛎(Crassostrea virginica)生物能和氧化应激的影响。","authors":"Tyler S. Mendela , Sean R. Isaac , Laura A. Enzor","doi":"10.1016/j.cbpb.2024.111002","DOIUrl":null,"url":null,"abstract":"<div><p>Projected increases in temperature and decreases in salinity associated with global climate change will likely have detrimental impacts on eastern oyster, <em>Crassostrea virginica</em>, as these variables can influence physiological processes in these keystone species. We set out to determine how the interactive effects of temperature (20 °C or 27 °C) and/or salinity (27‰ or 17‰) impacted the energetic reserves, aerobic and anaerobic metabolism, and changes to oxidative stress or total antioxidant potential as a consequence of an altered environment over a 21-day exposure. Gill and adductor muscle were used to quantify changes in total glycogen and lipid content, Electron Transport System and Citrate Synthase activities, Malate Dehydrogenase activity, Protein Carbonyl formation, lipid peroxidation, and total antioxidant potential. A second exposure was performed to determine if these environmental factors influenced the ingestion of microfibers, which are now one of the leading forms of marine debris. Elevated temperature and the combination of elevated temperature and decreased salinity led to an overall decline in oyster mass, which was exacerbated by the presence of microfibers. Changes in metabolism and oxidative stress were largely influenced by time, but exposure to elevated temperature, decreased salinity, the combination of these stressors or exposure to microfibers had small impacts on oyster physiology and survival. Overall these studies demonstrate that oyster are fairly resilient to changes in salinity in short-term exposures, and elevations in temperature or temperature combined with salinity result in changes to the oyster energetic response, which can be further impacted by the presence of microfibers.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of elevated temperature, decreased salinity and microfibers on the bioenergetics and oxidative stress in eastern oyster, Crassostrea virginica\",\"authors\":\"Tyler S. Mendela , Sean R. Isaac , Laura A. Enzor\",\"doi\":\"10.1016/j.cbpb.2024.111002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Projected increases in temperature and decreases in salinity associated with global climate change will likely have detrimental impacts on eastern oyster, <em>Crassostrea virginica</em>, as these variables can influence physiological processes in these keystone species. We set out to determine how the interactive effects of temperature (20 °C or 27 °C) and/or salinity (27‰ or 17‰) impacted the energetic reserves, aerobic and anaerobic metabolism, and changes to oxidative stress or total antioxidant potential as a consequence of an altered environment over a 21-day exposure. Gill and adductor muscle were used to quantify changes in total glycogen and lipid content, Electron Transport System and Citrate Synthase activities, Malate Dehydrogenase activity, Protein Carbonyl formation, lipid peroxidation, and total antioxidant potential. A second exposure was performed to determine if these environmental factors influenced the ingestion of microfibers, which are now one of the leading forms of marine debris. Elevated temperature and the combination of elevated temperature and decreased salinity led to an overall decline in oyster mass, which was exacerbated by the presence of microfibers. Changes in metabolism and oxidative stress were largely influenced by time, but exposure to elevated temperature, decreased salinity, the combination of these stressors or exposure to microfibers had small impacts on oyster physiology and survival. Overall these studies demonstrate that oyster are fairly resilient to changes in salinity in short-term exposures, and elevations in temperature or temperature combined with salinity result in changes to the oyster energetic response, which can be further impacted by the presence of microfibers.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096495924000691\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096495924000691","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Impacts of elevated temperature, decreased salinity and microfibers on the bioenergetics and oxidative stress in eastern oyster, Crassostrea virginica
Projected increases in temperature and decreases in salinity associated with global climate change will likely have detrimental impacts on eastern oyster, Crassostrea virginica, as these variables can influence physiological processes in these keystone species. We set out to determine how the interactive effects of temperature (20 °C or 27 °C) and/or salinity (27‰ or 17‰) impacted the energetic reserves, aerobic and anaerobic metabolism, and changes to oxidative stress or total antioxidant potential as a consequence of an altered environment over a 21-day exposure. Gill and adductor muscle were used to quantify changes in total glycogen and lipid content, Electron Transport System and Citrate Synthase activities, Malate Dehydrogenase activity, Protein Carbonyl formation, lipid peroxidation, and total antioxidant potential. A second exposure was performed to determine if these environmental factors influenced the ingestion of microfibers, which are now one of the leading forms of marine debris. Elevated temperature and the combination of elevated temperature and decreased salinity led to an overall decline in oyster mass, which was exacerbated by the presence of microfibers. Changes in metabolism and oxidative stress were largely influenced by time, but exposure to elevated temperature, decreased salinity, the combination of these stressors or exposure to microfibers had small impacts on oyster physiology and survival. Overall these studies demonstrate that oyster are fairly resilient to changes in salinity in short-term exposures, and elevations in temperature or temperature combined with salinity result in changes to the oyster energetic response, which can be further impacted by the presence of microfibers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.