根据噪声数据开发的空间机器学习模型需要进行多尺度性能评估:预测美国特拉华河流域的基岩深度

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2024-06-21 DOI:10.1016/j.envsoft.2024.106124
P. Goodling , K. Belitz , P. Stackelberg , B. Fleming
{"title":"根据噪声数据开发的空间机器学习模型需要进行多尺度性能评估:预测美国特拉华河流域的基岩深度","authors":"P. Goodling ,&nbsp;K. Belitz ,&nbsp;P. Stackelberg ,&nbsp;B. Fleming","doi":"10.1016/j.envsoft.2024.106124","DOIUrl":null,"url":null,"abstract":"<div><p>Spatial machine learning models can be developed from observations with substantial unexplainable variability, sometimes called ‘noise’. Traditional point-scale metrics (e.g., R<sup>2</sup>) alone can be misleading when evaluating these models. We present a multi-scale performance evaluation (MPE) using two additional scales (distributional and geostatistical). We apply the MPE framework to predictions of depth to bedrock (DTB) in the Delaware River Basin. Geostatistical analysis shows that approximately one third of the DTB variance is at spatial scale smaller than 2 km. Hence, we interpret our point-scale R<sup>2</sup> of 0.3 (testing data) to be sufficient for regional-scale modelling. Bias-correction methods improve performance at two of the three MPE scales: point-scale change is negligible, while distributional and geostatistical performance improves. In contrast, bias correction applied to a global DTB model does not improve MPE performance. This work encourages scale-appropriate performance evaluations to enable effective model intercomparison.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224001853/pdfft?md5=7fedebb9a98cc4eebaa6f029bad61dfe&pid=1-s2.0-S1364815224001853-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A spatial machine learning model developed from noisy data requires multiscale performance evaluation: Predicting depth to bedrock in the Delaware river basin, USA\",\"authors\":\"P. Goodling ,&nbsp;K. Belitz ,&nbsp;P. Stackelberg ,&nbsp;B. Fleming\",\"doi\":\"10.1016/j.envsoft.2024.106124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spatial machine learning models can be developed from observations with substantial unexplainable variability, sometimes called ‘noise’. Traditional point-scale metrics (e.g., R<sup>2</sup>) alone can be misleading when evaluating these models. We present a multi-scale performance evaluation (MPE) using two additional scales (distributional and geostatistical). We apply the MPE framework to predictions of depth to bedrock (DTB) in the Delaware River Basin. Geostatistical analysis shows that approximately one third of the DTB variance is at spatial scale smaller than 2 km. Hence, we interpret our point-scale R<sup>2</sup> of 0.3 (testing data) to be sufficient for regional-scale modelling. Bias-correction methods improve performance at two of the three MPE scales: point-scale change is negligible, while distributional and geostatistical performance improves. In contrast, bias correction applied to a global DTB model does not improve MPE performance. This work encourages scale-appropriate performance evaluations to enable effective model intercomparison.</p></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1364815224001853/pdfft?md5=7fedebb9a98cc4eebaa6f029bad61dfe&pid=1-s2.0-S1364815224001853-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224001853\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224001853","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

空间机器学习模型可以从具有大量无法解释的变异性(有时称为 "噪声")的观测结果中开发出来。在评估这些模型时,仅采用传统的点尺度指标(如 R2)可能会产生误导。我们提出了一种多尺度性能评估(MPE),使用了两个额外的尺度(分布尺度和地质统计尺度)。我们将 MPE 框架应用于特拉华河流域基岩深度(DTB)的预测。地质统计分析显示,约有三分之一的 DTB 变量的空间尺度小于 2 千米。因此,我们认为 0.3 的点尺度 R2(测试数据)足以用于区域尺度建模。偏差校正方法提高了三个 MPE 尺度中两个尺度的性能:点尺度的变化可以忽略不计,而分布和地质统计性能则有所提高。相比之下,对全球 DTB 模型进行偏差校正并不能提高 MPE 性能。这项工作鼓励进行适合尺度的性能评估,以便进行有效的模型相互比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A spatial machine learning model developed from noisy data requires multiscale performance evaluation: Predicting depth to bedrock in the Delaware river basin, USA

Spatial machine learning models can be developed from observations with substantial unexplainable variability, sometimes called ‘noise’. Traditional point-scale metrics (e.g., R2) alone can be misleading when evaluating these models. We present a multi-scale performance evaluation (MPE) using two additional scales (distributional and geostatistical). We apply the MPE framework to predictions of depth to bedrock (DTB) in the Delaware River Basin. Geostatistical analysis shows that approximately one third of the DTB variance is at spatial scale smaller than 2 km. Hence, we interpret our point-scale R2 of 0.3 (testing data) to be sufficient for regional-scale modelling. Bias-correction methods improve performance at two of the three MPE scales: point-scale change is negligible, while distributional and geostatistical performance improves. In contrast, bias correction applied to a global DTB model does not improve MPE performance. This work encourages scale-appropriate performance evaluations to enable effective model intercomparison.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
A coordination attention residual U-Net model for enhanced short and mid-term sea surface temperature prediction An R package to partition observation data used for model development and evaluation to achieve model generalizability Dynamics of real-time forecasting failure and recovery due to data gaps: A study using EnKF-based assimilation with the Lorenz model Identification of pedestrian submerged parts in urban flooding based on images and deep learning A conceptual data modeling framework with four levels of abstraction for environmental information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1