阿尔茨海默病中的色氨酸代谢与小胶质细胞和星形胶质细胞串联以及肠脑轴的关系

IF 7 2区 医学 Q1 GERIATRICS & GERONTOLOGY Aging and Disease Pub Date : 2024-10-01 DOI:10.14336/AD.2024.0134
Lushuang Xie, Qiaofeng Wu, Kelin Li, Mohammed A S Khan, Andrew Zhang, Bharati Sinha, Sihui Li, Sulie L Chang, David L Brody, Mark W Grinstaff, Shuanhu Zhou, Gil Alterovitz, Pinghua Liu, Xin Wang
{"title":"阿尔茨海默病中的色氨酸代谢与小胶质细胞和星形胶质细胞串联以及肠脑轴的关系","authors":"Lushuang Xie, Qiaofeng Wu, Kelin Li, Mohammed A S Khan, Andrew Zhang, Bharati Sinha, Sihui Li, Sulie L Chang, David L Brody, Mark W Grinstaff, Shuanhu Zhou, Gil Alterovitz, Pinghua Liu, Xin Wang","doi":"10.14336/AD.2024.0134","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is an age-dependent neurodegenerative disease characterized by extracellular Amyloid Aβ peptide (Aβ) deposition and intracellular Tau protein aggregation. Glia, especially microglia and astrocytes are core participants during the progression of AD and these cells are the mediators of Aβ clearance and degradation. The microbiota-gut-brain axis (MGBA) is a complex interactive network between the gut and brain involved in neurodegeneration. MGBA affects the function of glia in the central nervous system (CNS), and microbial metabolites regulate the communication between astrocytes and microglia; however, whether such communication is part of AD pathophysiology remains unknown. One of the potential links in bilateral gut-brain communication is tryptophan (Trp) metabolism. The microbiota-originated Trp and its metabolites enter the CNS to control microglial activation, and the activated microglia subsequently affect astrocyte functions. The present review highlights the role of MGBA in AD pathology, especially the roles of Trp per se and its metabolism as a part of the gut microbiota and brain communications. We (i) discuss the roles of Trp derivatives in microglia-astrocyte crosstalk from a bioinformatics perspective, (ii) describe the role of glia polarization in the microglia-astrocyte crosstalk and AD pathology, and (iii) summarize the potential of Trp metabolism as a therapeutic target. Finally, we review the role of Trp in AD from the perspective of the gut-brain axis and microglia, as well as astrocyte crosstalk, to inspire the discovery of novel AD therapeutics.</p>","PeriodicalId":7434,"journal":{"name":"Aging and Disease","volume":" ","pages":"2168-2190"},"PeriodicalIF":7.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346405/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tryptophan Metabolism in Alzheimer's Disease with the Involvement of Microglia and Astrocyte Crosstalk and Gut-Brain Axis.\",\"authors\":\"Lushuang Xie, Qiaofeng Wu, Kelin Li, Mohammed A S Khan, Andrew Zhang, Bharati Sinha, Sihui Li, Sulie L Chang, David L Brody, Mark W Grinstaff, Shuanhu Zhou, Gil Alterovitz, Pinghua Liu, Xin Wang\",\"doi\":\"10.14336/AD.2024.0134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is an age-dependent neurodegenerative disease characterized by extracellular Amyloid Aβ peptide (Aβ) deposition and intracellular Tau protein aggregation. Glia, especially microglia and astrocytes are core participants during the progression of AD and these cells are the mediators of Aβ clearance and degradation. The microbiota-gut-brain axis (MGBA) is a complex interactive network between the gut and brain involved in neurodegeneration. MGBA affects the function of glia in the central nervous system (CNS), and microbial metabolites regulate the communication between astrocytes and microglia; however, whether such communication is part of AD pathophysiology remains unknown. One of the potential links in bilateral gut-brain communication is tryptophan (Trp) metabolism. The microbiota-originated Trp and its metabolites enter the CNS to control microglial activation, and the activated microglia subsequently affect astrocyte functions. The present review highlights the role of MGBA in AD pathology, especially the roles of Trp per se and its metabolism as a part of the gut microbiota and brain communications. We (i) discuss the roles of Trp derivatives in microglia-astrocyte crosstalk from a bioinformatics perspective, (ii) describe the role of glia polarization in the microglia-astrocyte crosstalk and AD pathology, and (iii) summarize the potential of Trp metabolism as a therapeutic target. Finally, we review the role of Trp in AD from the perspective of the gut-brain axis and microglia, as well as astrocyte crosstalk, to inspire the discovery of novel AD therapeutics.</p>\",\"PeriodicalId\":7434,\"journal\":{\"name\":\"Aging and Disease\",\"volume\":\" \",\"pages\":\"2168-2190\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346405/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging and Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.14336/AD.2024.0134\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14336/AD.2024.0134","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是一种依赖年龄的神经退行性疾病,以细胞外淀粉样 Aβ 肽(Aβ)沉积和细胞内 Tau 蛋白聚集为特征。神经胶质细胞,尤其是小胶质细胞和星形胶质细胞,是 AD 进展过程中的核心参与者,这些细胞是 Aβ 清除和降解的媒介。微生物群-肠-脑轴(MGBA)是肠道和大脑之间的一个复杂的互动网络,参与神经退行性病变。MGBA影响中枢神经系统(CNS)神经胶质细胞的功能,微生物代谢产物调节星形胶质细胞和小胶质细胞之间的交流;然而,这种交流是否是AD病理生理学的一部分仍是未知数。色氨酸(Trp)代谢是肠道-大脑双边交流的潜在环节之一。微生物群产生的 Trp 及其代谢产物进入中枢神经系统,控制小胶质细胞的活化,活化的小胶质细胞随后影响星形胶质细胞的功能。本综述强调了MGBA在AD病理学中的作用,尤其是Trp本身及其代谢作为肠道微生物群和大脑交流的一部分所发挥的作用。我们(i)从生物信息学的角度讨论了Trp衍生物在小胶质细胞-星形胶质细胞串扰中的作用,(ii)描述了胶质细胞极化在小胶质细胞-星形胶质细胞串扰和AD病理学中的作用,(iii)总结了Trp代谢作为治疗靶点的潜力。最后,我们从肠道-大脑轴和小胶质细胞以及星形胶质细胞串扰的角度回顾了 Trp 在 AD 中的作用,以启发新型 AD 治疗方法的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tryptophan Metabolism in Alzheimer's Disease with the Involvement of Microglia and Astrocyte Crosstalk and Gut-Brain Axis.

Alzheimer's disease (AD) is an age-dependent neurodegenerative disease characterized by extracellular Amyloid Aβ peptide (Aβ) deposition and intracellular Tau protein aggregation. Glia, especially microglia and astrocytes are core participants during the progression of AD and these cells are the mediators of Aβ clearance and degradation. The microbiota-gut-brain axis (MGBA) is a complex interactive network between the gut and brain involved in neurodegeneration. MGBA affects the function of glia in the central nervous system (CNS), and microbial metabolites regulate the communication between astrocytes and microglia; however, whether such communication is part of AD pathophysiology remains unknown. One of the potential links in bilateral gut-brain communication is tryptophan (Trp) metabolism. The microbiota-originated Trp and its metabolites enter the CNS to control microglial activation, and the activated microglia subsequently affect astrocyte functions. The present review highlights the role of MGBA in AD pathology, especially the roles of Trp per se and its metabolism as a part of the gut microbiota and brain communications. We (i) discuss the roles of Trp derivatives in microglia-astrocyte crosstalk from a bioinformatics perspective, (ii) describe the role of glia polarization in the microglia-astrocyte crosstalk and AD pathology, and (iii) summarize the potential of Trp metabolism as a therapeutic target. Finally, we review the role of Trp in AD from the perspective of the gut-brain axis and microglia, as well as astrocyte crosstalk, to inspire the discovery of novel AD therapeutics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aging and Disease
Aging and Disease GERIATRICS & GERONTOLOGY-
CiteScore
14.60
自引率
2.70%
发文量
138
审稿时长
10 weeks
期刊介绍: Aging & Disease (A&D) is an open-access online journal dedicated to publishing groundbreaking research on the biology of aging, the pathophysiology of age-related diseases, and innovative therapies for conditions affecting the elderly. The scope encompasses various diseases such as Stroke, Alzheimer's disease, Parkinson’s disease, Epilepsy, Dementia, Depression, Cardiovascular Disease, Cancer, Arthritis, Cataract, Osteoporosis, Diabetes, and Hypertension. The journal welcomes studies involving animal models as well as human tissues or cells.
期刊最新文献
Deformability of Heterogeneous Red Blood Cells in Aging and Related Pathologies. Exercise Types: Physical Activity Mitigates Cardiac Aging and Enhances Mitochondrial Function via PKG-STAT3-Opa1 Axis. Mechanisms of the Mitochondrial Unfolded Protein Response in Caenorhabditis elegans and Mammals and Its Roles in Striated Muscles. Normal Bone Matrix Mineralization but Altered Growth Plate Morphology in the LmnaG609G/G609G Mouse Model of Progeria. The Impact of Aging on Neurological Diseases in the Elderly: Molecular Mechanisms and Therapeutic Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1