CDR-H3环路模拟物的新合成与结构阐明

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Biology Pub Date : 2024-06-25 DOI:10.1021/acschembio.4c00236
Guangkuan Zhao, Alexis D Richaud, R Thomas Williamson, Michael Feig, Stéphane P Roche
{"title":"CDR-H3环路模拟物的新合成与结构阐明","authors":"Guangkuan Zhao, Alexis D Richaud, R Thomas Williamson, Michael Feig, Stéphane P Roche","doi":"10.1021/acschembio.4c00236","DOIUrl":null,"url":null,"abstract":"<p><p>The binding affinity of antibodies to specific antigens stems from a remarkably broad repertoire of hypervariable loops known as complementarity-determining regions (CDRs). While recognizing the pivotal role of the heavy-chain 3 CDRs (CDR-H3s) in maximizing antibody-antigen affinity and specificity, the key structural determinants responsible for their adaptability to diverse loop sequences, lengths, and noncanonical structures are hitherto unknown. To address this question, we achieved a de novo synthesis of bulged CDR-H3 mimics excised from their full antibody context. CD and NMR data revealed that these stable standalone β-hairpin scaffolds are well-folded and retain many of the native bulge CDR-H3 features in water. In particular, the tryptophan residue, highly conserved across CDR-H3 sequences, was found to extend the kinked base of these β-bulges through a combination of stabilizing intramolecular hydrogen bond and CH/π interaction. The structural ensemble consistent with our NMR observations exposed the dynamic nature of residues at the base of the loop, suggesting that β-bulges act as molecular hinges connecting the rigid stem to the more flexible loops of CDR-H3s. We anticipate that this deeper structural understanding of CDR-H3s will lay the foundation to inform the design of antibody drugs broadly and engineer novel CDR-H3 peptide scaffolds as therapeutics.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"De Novo Synthesis and Structural Elucidation of CDR-H3 Loop Mimics.\",\"authors\":\"Guangkuan Zhao, Alexis D Richaud, R Thomas Williamson, Michael Feig, Stéphane P Roche\",\"doi\":\"10.1021/acschembio.4c00236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The binding affinity of antibodies to specific antigens stems from a remarkably broad repertoire of hypervariable loops known as complementarity-determining regions (CDRs). While recognizing the pivotal role of the heavy-chain 3 CDRs (CDR-H3s) in maximizing antibody-antigen affinity and specificity, the key structural determinants responsible for their adaptability to diverse loop sequences, lengths, and noncanonical structures are hitherto unknown. To address this question, we achieved a de novo synthesis of bulged CDR-H3 mimics excised from their full antibody context. CD and NMR data revealed that these stable standalone β-hairpin scaffolds are well-folded and retain many of the native bulge CDR-H3 features in water. In particular, the tryptophan residue, highly conserved across CDR-H3 sequences, was found to extend the kinked base of these β-bulges through a combination of stabilizing intramolecular hydrogen bond and CH/π interaction. The structural ensemble consistent with our NMR observations exposed the dynamic nature of residues at the base of the loop, suggesting that β-bulges act as molecular hinges connecting the rigid stem to the more flexible loops of CDR-H3s. We anticipate that this deeper structural understanding of CDR-H3s will lay the foundation to inform the design of antibody drugs broadly and engineer novel CDR-H3 peptide scaffolds as therapeutics.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acschembio.4c00236\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00236","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

抗体与特异性抗原的结合亲和力源于被称为互补性决定区(CDR)的超变异环的极其广泛的组合。虽然人们认识到重链 3 CDRs(CDR-H3s)在最大限度地提高抗体与抗原的亲和力和特异性方面起着举足轻重的作用,但导致其适应不同环序列、长度和非规范结构的关键结构决定因素至今仍不为人所知。为了解决这个问题,我们从新合成了从完整抗体上下文中切除的凸起 CDR-H3 模拟物。CD 和 NMR 数据显示,这些稳定的独立 β 发夹支架折叠良好,并在水中保留了许多原生凸起 CDR-H3 的特征。尤其是色氨酸残基在 CDR-H3 序列中高度保守,研究发现它通过分子内氢键和 CH/π 相互作用的稳定作用,延长了这些 β-球蛋白的扭结基底。与我们的核磁共振观察结果一致的结构组合揭示了环基部残基的动态性质,表明 β-突起是连接 CDR-H3s 刚性茎干和柔性环的分子铰链。我们预计,对CDR-H3s结构的更深入了解将为抗体药物的广泛设计和新型CDR-H3肽支架的设计奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
De Novo Synthesis and Structural Elucidation of CDR-H3 Loop Mimics.

The binding affinity of antibodies to specific antigens stems from a remarkably broad repertoire of hypervariable loops known as complementarity-determining regions (CDRs). While recognizing the pivotal role of the heavy-chain 3 CDRs (CDR-H3s) in maximizing antibody-antigen affinity and specificity, the key structural determinants responsible for their adaptability to diverse loop sequences, lengths, and noncanonical structures are hitherto unknown. To address this question, we achieved a de novo synthesis of bulged CDR-H3 mimics excised from their full antibody context. CD and NMR data revealed that these stable standalone β-hairpin scaffolds are well-folded and retain many of the native bulge CDR-H3 features in water. In particular, the tryptophan residue, highly conserved across CDR-H3 sequences, was found to extend the kinked base of these β-bulges through a combination of stabilizing intramolecular hydrogen bond and CH/π interaction. The structural ensemble consistent with our NMR observations exposed the dynamic nature of residues at the base of the loop, suggesting that β-bulges act as molecular hinges connecting the rigid stem to the more flexible loops of CDR-H3s. We anticipate that this deeper structural understanding of CDR-H3s will lay the foundation to inform the design of antibody drugs broadly and engineer novel CDR-H3 peptide scaffolds as therapeutics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
期刊最新文献
Confounding Factors in Targeted Degradation of Short-Lived Proteins. ALTering Cancer by Triggering Telomere Replication Stress through the Stabilization of Promoter G-Quadruplex in SMARCAL1. Engineered Branaplam Aptamers Exploit Structural Elements from Natural Riboswitches. HCV 5-Methylcytosine Enhances Viral RNA Replication through Interaction with m5C Reader YBX1. Tyrosine Sulfation Modulates the Binding Affinity of Chemokine-Targeting Nanobodies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1