准竞配体的社会自我排序:双孔分子晶体的独特方法

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-06-25 DOI:10.1021/jacs.4c01654
Momoka Kimoto, Shoichi Sugiyama, Keigo Kumano, Satoshi Inagaki and Suguru Ito*, 
{"title":"准竞配体的社会自我排序:双孔分子晶体的独特方法","authors":"Momoka Kimoto,&nbsp;Shoichi Sugiyama,&nbsp;Keigo Kumano,&nbsp;Satoshi Inagaki and Suguru Ito*,&nbsp;","doi":"10.1021/jacs.4c01654","DOIUrl":null,"url":null,"abstract":"<p >Despite recent advances in porous organic molecular crystals, the engineering of dual-pore systems within the intermolecular voids remains a significant challenge. In this study, we have achieved the crystallization-induced social self-sorting of “quasi-racemic” dialdehydes into a macrocyclic imine. X-ray crystallographic analysis unambiguously characterizes the resulting structure as incorporating two quasi-racemate pairs with four diamine molecules. Notably, different alkyl substituents on the quasi-racemates afford two types of one-dimensional pores within the macrocyclic imine crystal. The different adsorption properties of these pores were substantiated through adsorption experiments. An intriguing helical arrangement of guest molecules was observed within one of the pores. This study provides pioneering evidence that the social self-sorting of quasi-racemates offers a new methodology for creating dual-functional supramolecular materials.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c01654","citationCount":"0","resultStr":"{\"title\":\"Social Self-Sorting of Quasi-Racemates: A Unique Approach for Dual-Pore Molecular Crystals\",\"authors\":\"Momoka Kimoto,&nbsp;Shoichi Sugiyama,&nbsp;Keigo Kumano,&nbsp;Satoshi Inagaki and Suguru Ito*,&nbsp;\",\"doi\":\"10.1021/jacs.4c01654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Despite recent advances in porous organic molecular crystals, the engineering of dual-pore systems within the intermolecular voids remains a significant challenge. In this study, we have achieved the crystallization-induced social self-sorting of “quasi-racemic” dialdehydes into a macrocyclic imine. X-ray crystallographic analysis unambiguously characterizes the resulting structure as incorporating two quasi-racemate pairs with four diamine molecules. Notably, different alkyl substituents on the quasi-racemates afford two types of one-dimensional pores within the macrocyclic imine crystal. The different adsorption properties of these pores were substantiated through adsorption experiments. An intriguing helical arrangement of guest molecules was observed within one of the pores. This study provides pioneering evidence that the social self-sorting of quasi-racemates offers a new methodology for creating dual-functional supramolecular materials.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c01654\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c01654\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c01654","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管最近在多孔有机分子晶体方面取得了进展,但分子间空隙内双孔系统的工程设计仍然是一项重大挑战。在这项研究中,我们实现了结晶诱导的 "准外显 "二醛向大环亚胺的社会自排序。X 射线晶体学分析明确指出,由此产生的结构包含两个准外差对和四个二胺分子。值得注意的是,准邻苯二胺上的不同烷基取代基在大环亚胺晶体中产生了两种类型的一维孔隙。吸附实验证实了这些孔隙的不同吸附特性。在其中一个孔隙中观察到了客体分子的螺旋排列。这项研究提供了开创性的证据,证明准链式化合物的社会自排序为创造双功能超分子材料提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Social Self-Sorting of Quasi-Racemates: A Unique Approach for Dual-Pore Molecular Crystals

Despite recent advances in porous organic molecular crystals, the engineering of dual-pore systems within the intermolecular voids remains a significant challenge. In this study, we have achieved the crystallization-induced social self-sorting of “quasi-racemic” dialdehydes into a macrocyclic imine. X-ray crystallographic analysis unambiguously characterizes the resulting structure as incorporating two quasi-racemate pairs with four diamine molecules. Notably, different alkyl substituents on the quasi-racemates afford two types of one-dimensional pores within the macrocyclic imine crystal. The different adsorption properties of these pores were substantiated through adsorption experiments. An intriguing helical arrangement of guest molecules was observed within one of the pores. This study provides pioneering evidence that the social self-sorting of quasi-racemates offers a new methodology for creating dual-functional supramolecular materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
A Bioinspired Nonheme FeIII-(O22-)-CuII Complex with an St = 1 Ground State. Catalyst Editing via Post-Synthetic Functionalization by Phosphonium Generation and Anion Exchange for Nickel-Catalyzed Ethylene/Acrylate Copolymerization. Diverse Synthesis of C-Glycosides by Stereoselective Ni-Catalyzed Carboboration of Glycals. Elucidating the Transport of Electrons and Molecules in a Solid Electrolyte Interphase Close to Battery Operation Potentials Using a Four-Electrode-Based Generator-Collector Setup. Interrogation of Oxidative Pulsed Methods for the Stabilization of Copper Electrodes for CO2 Electrolysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1