促炎细胞因子抑制犬肠器官组织的干性相关特性和紧密连接的表达。

IF 1.5 4区 生物学 Q4 CELL BIOLOGY In Vitro Cellular & Developmental Biology. Animal Pub Date : 2024-09-01 Epub Date: 2024-06-24 DOI:10.1007/s11626-024-00936-w
Meg Nakazawa, Itsuma Nagao, Yoko M Ambrosini
{"title":"促炎细胞因子抑制犬肠器官组织的干性相关特性和紧密连接的表达。","authors":"Meg Nakazawa, Itsuma Nagao, Yoko M Ambrosini","doi":"10.1007/s11626-024-00936-w","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in canine intestinal organoid research have paved the way for the development of enhanced in vitro models, crucial for exploring intestinal physiology and diseases. Despite these strides, there is a notable gap in creating specific in vitro models that focus on intestinal inflammation. Our study aims to bridge this gap by investigating the impact of proinflammatory cytokines on canine intestinal epithelial cells (IECs) within the context of organoid models. Canine intestinal organoids were treated with proinflammatory cytokines TNF-α, IFN-γ, and IL-1β. The expression of stem cell markers Lgr5, Sox9, Hopx, and Olfm4 was evaluated through RT-qPCR, while membrane integrity was assessed using immunofluorescence staining for tight junction proteins and transport assays for permeability. IFN-γ significantly decreased Lgr5 expression, a key intestinal stem cell marker, at both 24 and 48 h post-treatment (p=0.030 and p=0.002, respectively). Conversely, TNF-α increased Olfm4 expression during the same intervals (p=0.018 and p=0.011, respectively). A reduction in EdU-positive cells, indicative of decreased cell proliferation, was observed following IFN-γ treatment. Additionally, a decrease in tight junction proteins E-cadherin and ZO-1 (p<0.001 and p=0.003, respectively) and increased permeability in IECs (p=0.012) were noted, particularly following treatment with IFN-γ. The study highlights the profound impact of proinflammatory cytokines on canine IECs, influencing both stem cell dynamics and membrane integrity. These insights shed light on the intricate cellular processes underlying inflammation in the gut and open avenues for more in-depth research into the long-term effects of inflammation on intestinal health.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"916-925"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419940/pdf/","citationCount":"0","resultStr":"{\"title\":\"Proinflammatory cytokines suppress stemness-related properties and expression of tight junction in canine intestinal organoids.\",\"authors\":\"Meg Nakazawa, Itsuma Nagao, Yoko M Ambrosini\",\"doi\":\"10.1007/s11626-024-00936-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advancements in canine intestinal organoid research have paved the way for the development of enhanced in vitro models, crucial for exploring intestinal physiology and diseases. Despite these strides, there is a notable gap in creating specific in vitro models that focus on intestinal inflammation. Our study aims to bridge this gap by investigating the impact of proinflammatory cytokines on canine intestinal epithelial cells (IECs) within the context of organoid models. Canine intestinal organoids were treated with proinflammatory cytokines TNF-α, IFN-γ, and IL-1β. The expression of stem cell markers Lgr5, Sox9, Hopx, and Olfm4 was evaluated through RT-qPCR, while membrane integrity was assessed using immunofluorescence staining for tight junction proteins and transport assays for permeability. IFN-γ significantly decreased Lgr5 expression, a key intestinal stem cell marker, at both 24 and 48 h post-treatment (p=0.030 and p=0.002, respectively). Conversely, TNF-α increased Olfm4 expression during the same intervals (p=0.018 and p=0.011, respectively). A reduction in EdU-positive cells, indicative of decreased cell proliferation, was observed following IFN-γ treatment. Additionally, a decrease in tight junction proteins E-cadherin and ZO-1 (p<0.001 and p=0.003, respectively) and increased permeability in IECs (p=0.012) were noted, particularly following treatment with IFN-γ. The study highlights the profound impact of proinflammatory cytokines on canine IECs, influencing both stem cell dynamics and membrane integrity. These insights shed light on the intricate cellular processes underlying inflammation in the gut and open avenues for more in-depth research into the long-term effects of inflammation on intestinal health.</p>\",\"PeriodicalId\":13340,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology. Animal\",\"volume\":\" \",\"pages\":\"916-925\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419940/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology. Animal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-024-00936-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00936-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

犬肠道类器官研究的最新进展为开发增强型体外模型铺平了道路,这对探索肠道生理学和疾病至关重要。尽管取得了这些进展,但在建立以肠道炎症为重点的特定体外模型方面仍存在明显差距。我们的研究旨在通过在类器官模型中研究促炎细胞因子对犬肠上皮细胞(IECs)的影响来弥补这一差距。用促炎细胞因子 TNF-α、IFN-γ 和 IL-1β 处理犬肠器官组织。干细胞标记物 Lgr5、Sox9、Hopx 和 Olfm4 的表达通过 RT-qPCR 进行了评估,而膜的完整性则通过免疫荧光染色检测紧密连接蛋白和运输检测渗透性进行了评估。治疗后24小时和48小时,IFN-γ都明显降低了Lgr5的表达,Lgr5是一种关键的肠干细胞标记物(p=0.030和p=0.002)。相反,TNF-α会在相同时间段内增加Olfm4的表达(分别为p=0.018和p=0.011)。IFN-γ处理后,EdU阳性细胞减少,表明细胞增殖减少。此外,紧密连接蛋白 E-cadherin 和 ZO-1 的含量也有所下降(p=0.018 和 p=0.011)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proinflammatory cytokines suppress stemness-related properties and expression of tight junction in canine intestinal organoids.

Recent advancements in canine intestinal organoid research have paved the way for the development of enhanced in vitro models, crucial for exploring intestinal physiology and diseases. Despite these strides, there is a notable gap in creating specific in vitro models that focus on intestinal inflammation. Our study aims to bridge this gap by investigating the impact of proinflammatory cytokines on canine intestinal epithelial cells (IECs) within the context of organoid models. Canine intestinal organoids were treated with proinflammatory cytokines TNF-α, IFN-γ, and IL-1β. The expression of stem cell markers Lgr5, Sox9, Hopx, and Olfm4 was evaluated through RT-qPCR, while membrane integrity was assessed using immunofluorescence staining for tight junction proteins and transport assays for permeability. IFN-γ significantly decreased Lgr5 expression, a key intestinal stem cell marker, at both 24 and 48 h post-treatment (p=0.030 and p=0.002, respectively). Conversely, TNF-α increased Olfm4 expression during the same intervals (p=0.018 and p=0.011, respectively). A reduction in EdU-positive cells, indicative of decreased cell proliferation, was observed following IFN-γ treatment. Additionally, a decrease in tight junction proteins E-cadherin and ZO-1 (p<0.001 and p=0.003, respectively) and increased permeability in IECs (p=0.012) were noted, particularly following treatment with IFN-γ. The study highlights the profound impact of proinflammatory cytokines on canine IECs, influencing both stem cell dynamics and membrane integrity. These insights shed light on the intricate cellular processes underlying inflammation in the gut and open avenues for more in-depth research into the long-term effects of inflammation on intestinal health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
期刊最新文献
Efficacy determination of a disinfectant against channel catfish virus by in vitro and in vivo methods. Preliminary study on the potential damage of cigarette smoke extract in 3D human chondrocyte culture. Expression, prognosis, immunological infiltration, and DNA methylation of members of the SFRP gene family in colorectal cancer: a comparative bioinformatic and experimental analysis. OPA3 inhibits the cGAS-STING pathway mediated by mtDNA stress to promote colorectal cancer progression. Maxing Yigan formula promotes cartilage regeneration by regulating chondrocyte autophagy in osteoarthritis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1