Xiang Li, John Cole, Diane Vaughan, Yinbo Xiao, Daniel Walker, Daniel M Wall
{"title":"根据巨噬细胞的感染负担对其进行分层,可确定在克罗恩病相关的粘附侵袭性大肠埃希菌感染期间进行干预的新型宿主靶标。","authors":"Xiang Li, John Cole, Diane Vaughan, Yinbo Xiao, Daniel Walker, Daniel M Wall","doi":"10.1099/mic.0.001470","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial infection is a dynamic process resulting in a heterogenous population of infected and uninfected cells. These cells respond differently based on their bacterial load and duration of infection. In the case of infection of macrophages with Crohn's disease (CD) associated adherent-invasive <i>Escherichia coli</i> (AIEC), understanding the drivers of pathogen success may allow targeting of cells where AIEC replicate to high levels. Here we show that stratifying immune cells based on their bacterial load identifies novel pathways and therapeutic targets not previously associated with AIEC when using a traditional homogeneous infected population approach. Using flow cytometry-based cell sorting we stratified cells into those with low or high intracellular pathogen loads, or those which were bystanders to infection. Immune cells transcriptomics revealed a diverse response to the varying levels of infection while pathway analysis identified novel intervention targets that were directly related to increasing intracellular AIEC numbers. Chemical inhibition of identified targets reduced AIEC intracellular replication or inhibited secretion of tumour necrosis factor alpha (TNFα), a key cytokine associated with AIEC infection. Our results have identified new avenues of intervention in AIEC infection that may also be applicable to CD through the repurposing of already available inhibitors. Additionally, they highlight the applicability of immune cell stratification post-infection as an effective approach for the study of microbial pathogens.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261827/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stratifying macrophages based on their infectious burden identifies novel host targets for intervention during Crohn's disease associated adherent-invasive <i>Escherichia coli</i> infection.\",\"authors\":\"Xiang Li, John Cole, Diane Vaughan, Yinbo Xiao, Daniel Walker, Daniel M Wall\",\"doi\":\"10.1099/mic.0.001470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacterial infection is a dynamic process resulting in a heterogenous population of infected and uninfected cells. These cells respond differently based on their bacterial load and duration of infection. In the case of infection of macrophages with Crohn's disease (CD) associated adherent-invasive <i>Escherichia coli</i> (AIEC), understanding the drivers of pathogen success may allow targeting of cells where AIEC replicate to high levels. Here we show that stratifying immune cells based on their bacterial load identifies novel pathways and therapeutic targets not previously associated with AIEC when using a traditional homogeneous infected population approach. Using flow cytometry-based cell sorting we stratified cells into those with low or high intracellular pathogen loads, or those which were bystanders to infection. Immune cells transcriptomics revealed a diverse response to the varying levels of infection while pathway analysis identified novel intervention targets that were directly related to increasing intracellular AIEC numbers. Chemical inhibition of identified targets reduced AIEC intracellular replication or inhibited secretion of tumour necrosis factor alpha (TNFα), a key cytokine associated with AIEC infection. Our results have identified new avenues of intervention in AIEC infection that may also be applicable to CD through the repurposing of already available inhibitors. Additionally, they highlight the applicability of immune cell stratification post-infection as an effective approach for the study of microbial pathogens.</p>\",\"PeriodicalId\":49819,\"journal\":{\"name\":\"Microbiology-Sgm\",\"volume\":\"170 6\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261827/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology-Sgm\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1099/mic.0.001470\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001470","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Stratifying macrophages based on their infectious burden identifies novel host targets for intervention during Crohn's disease associated adherent-invasive Escherichia coli infection.
Bacterial infection is a dynamic process resulting in a heterogenous population of infected and uninfected cells. These cells respond differently based on their bacterial load and duration of infection. In the case of infection of macrophages with Crohn's disease (CD) associated adherent-invasive Escherichia coli (AIEC), understanding the drivers of pathogen success may allow targeting of cells where AIEC replicate to high levels. Here we show that stratifying immune cells based on their bacterial load identifies novel pathways and therapeutic targets not previously associated with AIEC when using a traditional homogeneous infected population approach. Using flow cytometry-based cell sorting we stratified cells into those with low or high intracellular pathogen loads, or those which were bystanders to infection. Immune cells transcriptomics revealed a diverse response to the varying levels of infection while pathway analysis identified novel intervention targets that were directly related to increasing intracellular AIEC numbers. Chemical inhibition of identified targets reduced AIEC intracellular replication or inhibited secretion of tumour necrosis factor alpha (TNFα), a key cytokine associated with AIEC infection. Our results have identified new avenues of intervention in AIEC infection that may also be applicable to CD through the repurposing of already available inhibitors. Additionally, they highlight the applicability of immune cell stratification post-infection as an effective approach for the study of microbial pathogens.
期刊介绍:
We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms.
Topics include but are not limited to:
Antimicrobials and antimicrobial resistance
Bacteriology and parasitology
Biochemistry and biophysics
Biofilms and biological systems
Biotechnology and bioremediation
Cell biology and signalling
Chemical biology
Cross-disciplinary work
Ecology and environmental microbiology
Food microbiology
Genetics
Host–microbe interactions
Microbial methods and techniques
Microscopy and imaging
Omics, including genomics, proteomics and metabolomics
Physiology and metabolism
Systems biology and synthetic biology
The microbiome.