芒果种子和大豆种子脂质和类黄酮生物合成的比较分析:基因组、转录和代谢角度。

IF 6.1 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology for Biofuels Pub Date : 2024-06-24 DOI:10.1186/s13068-024-02538-w
Chun Liu, Rui Huang, Xingkun Zhao, Ranran Xu, Jianyu Zhang, Xinyong Li, Guodao Liu, Rongshu Dong, Pandao Liu
{"title":"芒果种子和大豆种子脂质和类黄酮生物合成的比较分析:基因组、转录和代谢角度。","authors":"Chun Liu,&nbsp;Rui Huang,&nbsp;Xingkun Zhao,&nbsp;Ranran Xu,&nbsp;Jianyu Zhang,&nbsp;Xinyong Li,&nbsp;Guodao Liu,&nbsp;Rongshu Dong,&nbsp;Pandao Liu","doi":"10.1186/s13068-024-02538-w","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Soybean (<i>Glycine max</i>) is a vital oil-producing crop. Augmenting oleic acid (OA) levels in soybean oil enhances its oxidative stability and health benefits, representing a key objective in soybean breeding. Pongamia (<i>Pongamia pinnata</i>), known for its abundant oil, OA, and flavonoid in the seeds, holds promise as a biofuel and medicinal plant. A comparative analysis of the lipid and flavonoid biosynthesis pathways in Pongamia and soybean seeds would facilitate the assessment of the potential value of Pongamia seeds and advance the genetic improvements of seed traits in both species.</p><h3>Results</h3><p>The study employed multi-omics analysis to systematically compare differences in metabolite accumulation and associated biosynthetic genes between Pongamia seeds and soybean seeds at the transcriptional, metabolic, and genomic levels. The results revealed that OA is the predominant free fatty acid in Pongamia seeds, being 8.3 times more abundant than in soybean seeds. Lipidomics unveiled a notably higher accumulation of triacylglycerols (TAGs) in Pongamia seeds compared to soybean seeds, with 23 TAG species containing OA. Subsequently, we identified orthologous groups (OGs) involved in lipid biosynthesis across 25 gene families in the genomes of Pongamia and soybean, and compared the expression levels of these OGs in the seeds of the two species. Among the OGs with expression levels in Pongamia seeds more than twice as high as in soybean seeds, we identified one fatty acyl-ACP thioesterase A (FATA) and two stearoyl-ACP desaturases (SADs), responsible for OA biosynthesis, along with two phospholipid:diacylglycerol acyltransferases (PDATs) and three acyl-CoA:diacylglycerol acyltransferases (DGATs), responsible for TAG biosynthesis. Furthermore, we observed a significantly higher content of the flavonoid formononetin in Pongamia seeds compared to soybean seeds, by over 2000-fold. This difference may be attributed to the tandem duplication expansions of 2,7,4ʹ-trihydroxyisoflavanone 4ʹ-O-methyltransferases (HI4ʹOMTs) in the Pongamia genome, which are responsible for the final step of formononetin biosynthesis, combined with their high expression levels in Pongamia seeds.</p><h3>Conclusions</h3><p>This study extends beyond observations made in single-species research by offering novel insights into the molecular basis of differences in lipid and flavonoid biosynthetic pathways between Pongamia and soybean, from a cross-species comparative perspective.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02538-w","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of lipid and flavonoid biosynthesis between Pongamia and soybean seeds: genomic, transcriptional, and metabolic perspectives\",\"authors\":\"Chun Liu,&nbsp;Rui Huang,&nbsp;Xingkun Zhao,&nbsp;Ranran Xu,&nbsp;Jianyu Zhang,&nbsp;Xinyong Li,&nbsp;Guodao Liu,&nbsp;Rongshu Dong,&nbsp;Pandao Liu\",\"doi\":\"10.1186/s13068-024-02538-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Soybean (<i>Glycine max</i>) is a vital oil-producing crop. Augmenting oleic acid (OA) levels in soybean oil enhances its oxidative stability and health benefits, representing a key objective in soybean breeding. Pongamia (<i>Pongamia pinnata</i>), known for its abundant oil, OA, and flavonoid in the seeds, holds promise as a biofuel and medicinal plant. A comparative analysis of the lipid and flavonoid biosynthesis pathways in Pongamia and soybean seeds would facilitate the assessment of the potential value of Pongamia seeds and advance the genetic improvements of seed traits in both species.</p><h3>Results</h3><p>The study employed multi-omics analysis to systematically compare differences in metabolite accumulation and associated biosynthetic genes between Pongamia seeds and soybean seeds at the transcriptional, metabolic, and genomic levels. The results revealed that OA is the predominant free fatty acid in Pongamia seeds, being 8.3 times more abundant than in soybean seeds. Lipidomics unveiled a notably higher accumulation of triacylglycerols (TAGs) in Pongamia seeds compared to soybean seeds, with 23 TAG species containing OA. Subsequently, we identified orthologous groups (OGs) involved in lipid biosynthesis across 25 gene families in the genomes of Pongamia and soybean, and compared the expression levels of these OGs in the seeds of the two species. Among the OGs with expression levels in Pongamia seeds more than twice as high as in soybean seeds, we identified one fatty acyl-ACP thioesterase A (FATA) and two stearoyl-ACP desaturases (SADs), responsible for OA biosynthesis, along with two phospholipid:diacylglycerol acyltransferases (PDATs) and three acyl-CoA:diacylglycerol acyltransferases (DGATs), responsible for TAG biosynthesis. Furthermore, we observed a significantly higher content of the flavonoid formononetin in Pongamia seeds compared to soybean seeds, by over 2000-fold. This difference may be attributed to the tandem duplication expansions of 2,7,4ʹ-trihydroxyisoflavanone 4ʹ-O-methyltransferases (HI4ʹOMTs) in the Pongamia genome, which are responsible for the final step of formononetin biosynthesis, combined with their high expression levels in Pongamia seeds.</p><h3>Conclusions</h3><p>This study extends beyond observations made in single-species research by offering novel insights into the molecular basis of differences in lipid and flavonoid biosynthetic pathways between Pongamia and soybean, from a cross-species comparative perspective.</p></div>\",\"PeriodicalId\":494,\"journal\":{\"name\":\"Biotechnology for Biofuels\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02538-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13068-024-02538-w\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02538-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:大豆(Glycine max)是一种重要的产油作物。提高大豆油中的油酸(OA)含量可增强其氧化稳定性和对健康的益处,这是大豆育种的一个关键目标。印度菠萝(Pongamia pinnata)因其种子中含有丰富的油、OA 和类黄酮而闻名,有望成为一种生物燃料和药用植物。通过比较分析红豆和大豆种子中脂质和类黄酮的生物合成途径,有助于评估红豆种子的潜在价值,并推动这两种植物种子性状的遗传改良:该研究采用多组学分析方法,在转录、代谢和基因组水平上系统比较了红豆杉种子和大豆种子在代谢物积累和相关生物合成基因方面的差异。结果发现,OA 是 Pongamia 种子中最主要的游离脂肪酸,其含量是大豆种子的 8.3 倍。脂质组学发现,与大豆种子相比,Pongamia 种子中三酰甘油(TAG)的积累量明显更高,其中 23 种 TAG 含有 OA。随后,我们在 Pongamia 和大豆基因组的 25 个基因家族中发现了参与脂质生物合成的直向同源组(OGs),并比较了这些 OGs 在两个物种种子中的表达水平。在表达水平比大豆种子高两倍以上的OGs中,我们发现了一种负责OA生物合成的脂肪酰基-ACP硫代酯酶A(FATA)和两种硬脂酰基-ACP去饱和酶(SADs),以及两种磷脂:二酰甘油酰基转移酶(PDATs)和三种负责TAG生物合成的酰基-CoA:二酰甘油酰基转移酶(DGATs)。此外,我们还观察到,与大豆种子相比,洋蒲桃种子中的黄酮类化合物甲壬素含量明显较高,高出 2000 多倍。这一差异可能是由于负责甲酮素生物合成最后一步的 2,7,4'-三羟基异黄酮 4'-O-甲基转移酶(HI4'OMTs)在 Pongamia 基因组中的串联重复扩增,以及它们在 Pongamia 种子中的高表达水平所致:这项研究超越了单一物种研究的观察范围,从跨物种比较的角度,为了解红豆和大豆脂质和类黄酮生物合成途径差异的分子基础提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative analysis of lipid and flavonoid biosynthesis between Pongamia and soybean seeds: genomic, transcriptional, and metabolic perspectives

Background

Soybean (Glycine max) is a vital oil-producing crop. Augmenting oleic acid (OA) levels in soybean oil enhances its oxidative stability and health benefits, representing a key objective in soybean breeding. Pongamia (Pongamia pinnata), known for its abundant oil, OA, and flavonoid in the seeds, holds promise as a biofuel and medicinal plant. A comparative analysis of the lipid and flavonoid biosynthesis pathways in Pongamia and soybean seeds would facilitate the assessment of the potential value of Pongamia seeds and advance the genetic improvements of seed traits in both species.

Results

The study employed multi-omics analysis to systematically compare differences in metabolite accumulation and associated biosynthetic genes between Pongamia seeds and soybean seeds at the transcriptional, metabolic, and genomic levels. The results revealed that OA is the predominant free fatty acid in Pongamia seeds, being 8.3 times more abundant than in soybean seeds. Lipidomics unveiled a notably higher accumulation of triacylglycerols (TAGs) in Pongamia seeds compared to soybean seeds, with 23 TAG species containing OA. Subsequently, we identified orthologous groups (OGs) involved in lipid biosynthesis across 25 gene families in the genomes of Pongamia and soybean, and compared the expression levels of these OGs in the seeds of the two species. Among the OGs with expression levels in Pongamia seeds more than twice as high as in soybean seeds, we identified one fatty acyl-ACP thioesterase A (FATA) and two stearoyl-ACP desaturases (SADs), responsible for OA biosynthesis, along with two phospholipid:diacylglycerol acyltransferases (PDATs) and three acyl-CoA:diacylglycerol acyltransferases (DGATs), responsible for TAG biosynthesis. Furthermore, we observed a significantly higher content of the flavonoid formononetin in Pongamia seeds compared to soybean seeds, by over 2000-fold. This difference may be attributed to the tandem duplication expansions of 2,7,4ʹ-trihydroxyisoflavanone 4ʹ-O-methyltransferases (HI4ʹOMTs) in the Pongamia genome, which are responsible for the final step of formononetin biosynthesis, combined with their high expression levels in Pongamia seeds.

Conclusions

This study extends beyond observations made in single-species research by offering novel insights into the molecular basis of differences in lipid and flavonoid biosynthetic pathways between Pongamia and soybean, from a cross-species comparative perspective.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology for Biofuels
Biotechnology for Biofuels 工程技术-生物工程与应用微生物
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass. Biotechnology for Biofuels focuses on the following areas: • Development of terrestrial plant feedstocks • Development of algal feedstocks • Biomass pretreatment, fractionation and extraction for biological conversion • Enzyme engineering, production and analysis • Bacterial genetics, physiology and metabolic engineering • Fungal/yeast genetics, physiology and metabolic engineering • Fermentation, biocatalytic conversion and reaction dynamics • Biological production of chemicals and bioproducts from biomass • Anaerobic digestion, biohydrogen and bioelectricity • Bioprocess integration, techno-economic analysis, modelling and policy • Life cycle assessment and environmental impact analysis
期刊最新文献
Propionate production by Bacteroidia gut bacteria and its dependence on substrate concentrations differs among species Designing a highly efficient type III polyketide whole-cell catalyst with minimized byproduct formation Efficient synthesis of limonene production in Yarrowia lipolytica by combinatorial engineering strategies Phosphate limitation enhances malic acid production on nitrogen-rich molasses with Ustilago trichophora Enhancement of protein production in Aspergillus niger by engineering the antioxidant defense metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1