通过调节不对称多位点 NiOOH 探索双位点 OER 机制

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-06-25 DOI:10.1039/D4NR01869A
Fei Wu, Biao Wu, Liang Chen, Yunan Wang, Jiejie Li and Qiuju Zhang
{"title":"通过调节不对称多位点 NiOOH 探索双位点 OER 机制","authors":"Fei Wu, Biao Wu, Liang Chen, Yunan Wang, Jiejie Li and Qiuju Zhang","doi":"10.1039/D4NR01869A","DOIUrl":null,"url":null,"abstract":"<p >Asymmetric nickel oxyhydroxide (NiOOH) possesses multi-OH and O active sites on different surfaces, (001) and (00<img>), which possibly causes a complicated catalytic process. Density functional theory (DFT) calculations reveal that the unconventional dual-site mechanism (UDSM) of the oxygen evolution reaction (OER) on NiOOH (001) and (00<img>) exhibits significantly lower overpotentials of 0.80 and 0.77 V, compared to 1.24 and 1.62 V for the single-site mechanism (SSM), respectively. Through chemical doping or heterojunction modifications, the constructed NiOOH@FeOOH (00<img>) heterojunction reduces the thermodynamic overpotential to 0.49 V from original 0.77 V undergoing the UDSM. Although Fe/Co-doping or physical compression yield similar or slightly higher overpotentials and are not conductive to facilitating the OER process by the UDSM, all dual-site paths exhibit obviously lower overpotentials than the SSM for pristine and regulated NiOOH (001) and (00<img>) from the whole viewpoint. This work identifies a more reasonable and efficient dual-site OER mechanism, which is expected to help the rational design of highly-efficient electrocatalysts.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-site OER mechanism exploration through regulating asymmetric multi-site NiOOH†\",\"authors\":\"Fei Wu, Biao Wu, Liang Chen, Yunan Wang, Jiejie Li and Qiuju Zhang\",\"doi\":\"10.1039/D4NR01869A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Asymmetric nickel oxyhydroxide (NiOOH) possesses multi-OH and O active sites on different surfaces, (001) and (00<img>), which possibly causes a complicated catalytic process. Density functional theory (DFT) calculations reveal that the unconventional dual-site mechanism (UDSM) of the oxygen evolution reaction (OER) on NiOOH (001) and (00<img>) exhibits significantly lower overpotentials of 0.80 and 0.77 V, compared to 1.24 and 1.62 V for the single-site mechanism (SSM), respectively. Through chemical doping or heterojunction modifications, the constructed NiOOH@FeOOH (00<img>) heterojunction reduces the thermodynamic overpotential to 0.49 V from original 0.77 V undergoing the UDSM. Although Fe/Co-doping or physical compression yield similar or slightly higher overpotentials and are not conductive to facilitating the OER process by the UDSM, all dual-site paths exhibit obviously lower overpotentials than the SSM for pristine and regulated NiOOH (001) and (00<img>) from the whole viewpoint. This work identifies a more reasonable and efficient dual-site OER mechanism, which is expected to help the rational design of highly-efficient electrocatalysts.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr01869a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr01869a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

不对称氢氧化镍(NiOOH)在不同的表面(001)和(001 @#x0305;)上具有多个OH和O活性位点,这可能会导致复杂的催化过程。密度泛函理论(DFT)计算显示,NiOOH(001)和(001 @#x0305;)表面氧进化反应的非常规双位点机理(UDSM)的过电势分别为 0.80 V 和 0.77 V,明显低于单位点机理(SSM)的 1.24 V 和 1.62 V。通过化学掺杂或异质结修饰,所构建的 NiOOH@FeOOH (001 @#x0305;) 异质结将 UDSM 的热力学过电位从原来的 0.77 V 降低到 0.49 V。虽然铁/钴掺杂或物理压缩产生的过电位相近或略高,而且对促进 UDSM 的 OER 过程没有传导作用,但从整体上看,对于原始和调节的 NiOOH (001) 和 (001 @#x0305;),所有双位点路径都表现出明显低于 SSM 的过电位。这项研究发现了一种更合理、更高效的双位点 OER 机制,有望帮助合理设计高效电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual-site OER mechanism exploration through regulating asymmetric multi-site NiOOH†

Asymmetric nickel oxyhydroxide (NiOOH) possesses multi-OH and O active sites on different surfaces, (001) and (00), which possibly causes a complicated catalytic process. Density functional theory (DFT) calculations reveal that the unconventional dual-site mechanism (UDSM) of the oxygen evolution reaction (OER) on NiOOH (001) and (00) exhibits significantly lower overpotentials of 0.80 and 0.77 V, compared to 1.24 and 1.62 V for the single-site mechanism (SSM), respectively. Through chemical doping or heterojunction modifications, the constructed NiOOH@FeOOH (00) heterojunction reduces the thermodynamic overpotential to 0.49 V from original 0.77 V undergoing the UDSM. Although Fe/Co-doping or physical compression yield similar or slightly higher overpotentials and are not conductive to facilitating the OER process by the UDSM, all dual-site paths exhibit obviously lower overpotentials than the SSM for pristine and regulated NiOOH (001) and (00) from the whole viewpoint. This work identifies a more reasonable and efficient dual-site OER mechanism, which is expected to help the rational design of highly-efficient electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
CD56-targeted in vivo genetic engineering of natural killer cells mediates immunotherapy for acute myeloid leukemia. High Sensing Performance Hybrid Nanostructure Constructed via Nanoscale Confined Motion of Nanofiber and Nanoplatelet in Flexible Nanocomposite Sensor Nanoscopic visualization of microgel-immobilized cytochrome P450 enzymes and their local activity Metamagnetic transition and meta-stable magnetic state in Co-dopedFe3GaTe2 Perspectives on sustainable and efficient routes of nanoparticle synthesis: an exhaustive review on conventional and microplasma-assisted techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1