了解低二氧化碳浓度下电化学转化二氧化碳的局限性

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-06-24 DOI:10.1021/acsenergylett.4c01224
Danielle A. Henckel, Prantik Saha, Sunil Rajana, Carlos Baez-Cotto, Audrey K. Taylor, Zengcai Liu, Michael G. Resch, Richard I. Masel and K. C. Neyerlin*, 
{"title":"了解低二氧化碳浓度下电化学转化二氧化碳的局限性","authors":"Danielle A. Henckel,&nbsp;Prantik Saha,&nbsp;Sunil Rajana,&nbsp;Carlos Baez-Cotto,&nbsp;Audrey K. Taylor,&nbsp;Zengcai Liu,&nbsp;Michael G. Resch,&nbsp;Richard I. Masel and K. C. Neyerlin*,&nbsp;","doi":"10.1021/acsenergylett.4c01224","DOIUrl":null,"url":null,"abstract":"<p >Low-temperature electrochemical CO<sub>2</sub> reduction has demonstrated high selectivity for CO when devices are operated with pure CO<sub>2</sub> streams. However, there is currently a dearth of knowledge for systems operating below 30% CO<sub>2</sub>, a regime interesting for coupling electrochemical devices with CO<sub>2</sub> point sources. Here we examine the influence of ionomer chemistry and cell operating conditions on the CO selectivity at low CO<sub>2</sub> concentrations. Utilizing advanced electrochemical diagnostics, values for cathode catalyst layer ionic resistance and electrocatalyst capacitance as a function of relative humidity (RH) were extracted and correlated with selectivity and catalyst utilization. Staying above 20% CO<sub>2</sub> concentration with at least a 50% cathode RH resulted in &gt;95% CO/H<sub>2</sub> selectivity regardless of the ionomer chemistry. At 10% CO<sub>2</sub>, however, &gt;95% CO/H<sub>2</sub> selectivity was only obtained at 95% RH under scenarios where the resulting electrode morphology enabled high catalyst utilization.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenergylett.4c01224","citationCount":"0","resultStr":"{\"title\":\"Understanding Limitations in Electrochemical Conversion to CO at Low CO2 Concentrations\",\"authors\":\"Danielle A. Henckel,&nbsp;Prantik Saha,&nbsp;Sunil Rajana,&nbsp;Carlos Baez-Cotto,&nbsp;Audrey K. Taylor,&nbsp;Zengcai Liu,&nbsp;Michael G. Resch,&nbsp;Richard I. Masel and K. C. Neyerlin*,&nbsp;\",\"doi\":\"10.1021/acsenergylett.4c01224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Low-temperature electrochemical CO<sub>2</sub> reduction has demonstrated high selectivity for CO when devices are operated with pure CO<sub>2</sub> streams. However, there is currently a dearth of knowledge for systems operating below 30% CO<sub>2</sub>, a regime interesting for coupling electrochemical devices with CO<sub>2</sub> point sources. Here we examine the influence of ionomer chemistry and cell operating conditions on the CO selectivity at low CO<sub>2</sub> concentrations. Utilizing advanced electrochemical diagnostics, values for cathode catalyst layer ionic resistance and electrocatalyst capacitance as a function of relative humidity (RH) were extracted and correlated with selectivity and catalyst utilization. Staying above 20% CO<sub>2</sub> concentration with at least a 50% cathode RH resulted in &gt;95% CO/H<sub>2</sub> selectivity regardless of the ionomer chemistry. At 10% CO<sub>2</sub>, however, &gt;95% CO/H<sub>2</sub> selectivity was only obtained at 95% RH under scenarios where the resulting electrode morphology enabled high catalyst utilization.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsenergylett.4c01224\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.4c01224\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c01224","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

低温电化学二氧化碳还原装置在使用纯二氧化碳流时,对一氧化碳具有很高的选择性。然而,目前有关 CO2 浓度低于 30% 的系统的知识还很匮乏,而这正是电化学装置与 CO2 点源耦合的一个有趣机制。在此,我们研究了离子膜化学和电池操作条件对低浓度二氧化碳选择性的影响。利用先进的电化学诊断技术,我们提取了阴极催化剂层离子电阻和电催化剂电容值与相对湿度(RH)的函数关系,并将其与选择性和催化剂利用率联系起来。在阴极相对湿度至少为 50% 的情况下,二氧化碳浓度保持在 20% 以上,无论离子膜化学性质如何,都能获得 95% 的 CO/H2 选择性。然而,当二氧化碳浓度为 10%时,只有在 95% 相对湿度的情况下才能获得 95% 的 CO/H2 选择性,在这种情况下,所产生的电极形态能够实现较高的催化剂利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding Limitations in Electrochemical Conversion to CO at Low CO2 Concentrations

Low-temperature electrochemical CO2 reduction has demonstrated high selectivity for CO when devices are operated with pure CO2 streams. However, there is currently a dearth of knowledge for systems operating below 30% CO2, a regime interesting for coupling electrochemical devices with CO2 point sources. Here we examine the influence of ionomer chemistry and cell operating conditions on the CO selectivity at low CO2 concentrations. Utilizing advanced electrochemical diagnostics, values for cathode catalyst layer ionic resistance and electrocatalyst capacitance as a function of relative humidity (RH) were extracted and correlated with selectivity and catalyst utilization. Staying above 20% CO2 concentration with at least a 50% cathode RH resulted in >95% CO/H2 selectivity regardless of the ionomer chemistry. At 10% CO2, however, >95% CO/H2 selectivity was only obtained at 95% RH under scenarios where the resulting electrode morphology enabled high catalyst utilization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Digital Twin Battery Modeling and Simulations: A New Analysis and Design Tool for Rechargeable Batteries Generative Design and Experimental Validation of Non-Fullerene Acceptors for Photovoltaics Rational Third Component Choices Drive Enhanced Morphology and Efficiency in Ternary Blend Organic Solar Cells Origins of Nanoalloy Catalysts Degradation during Membrane Electrode Assembly Fabrication Correction to “Multicomponent Approach for Stable Methylammonium-Free Tin–Lead Perovskite Solar Cells”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1