单层 FeSe/SrTiO3(001)-(√13 × √13) 中原子-位点相关的配对间隙

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-06-25 DOI:10.1021/acs.nanolett.4c02627
Cui Ding, Zhongxu Wei, Wenfeng Dong, Hai Feng, Mingxia Shi, Lili Wang*, Jin-Feng Jia* and Qi-Kun Xue*, 
{"title":"单层 FeSe/SrTiO3(001)-(√13 × √13) 中原子-位点相关的配对间隙","authors":"Cui Ding,&nbsp;Zhongxu Wei,&nbsp;Wenfeng Dong,&nbsp;Hai Feng,&nbsp;Mingxia Shi,&nbsp;Lili Wang*,&nbsp;Jin-Feng Jia* and Qi-Kun Xue*,&nbsp;","doi":"10.1021/acs.nanolett.4c02627","DOIUrl":null,"url":null,"abstract":"<p >The interfacial FeSe/TiO<sub>2−δ</sub> coupling induces high-temperature superconductivity in monolayer FeSe films. Using cryogenic atomically resolved scanning tunneling microscopy/spectroscopy, we obtained atomic-site dependent surface density of states, work function, and the pairing gap in the monolayer FeSe on the SrTiO<sub>3</sub>(001)–(√13 × √13)–R33.7° surface. Our results disclosed the out-of-plane Se–Fe–Se triple layer gradient variation, switched DOS for Fe sites on and off TiO<sub>5□</sub>, and inequivalent Fe sublattices, which gives global spatial modulation of pairing gap contaminants with the (√13 × √13) pattern. Moreover, the coherent lattice coupling induces strong inversion asymmetry and in-plane anisotropy in the monolayer FeSe, which is demonstrated to correlate with the particle–hole asymmetry in coherence peaks. These results disclose delicate atomic-scale correlations between pairing and lattice-electronic coupling in the Bardeen–Cooper–Schrieffer to Bose–Einstein condensation crossover regime, providing insights into understanding the pairing mechanism of multiorbital superconductivity.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic-Site-Dependent Pairing Gap in Monolayer FeSe/SrTiO3(001)–(√13 × √13)\",\"authors\":\"Cui Ding,&nbsp;Zhongxu Wei,&nbsp;Wenfeng Dong,&nbsp;Hai Feng,&nbsp;Mingxia Shi,&nbsp;Lili Wang*,&nbsp;Jin-Feng Jia* and Qi-Kun Xue*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c02627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The interfacial FeSe/TiO<sub>2−δ</sub> coupling induces high-temperature superconductivity in monolayer FeSe films. Using cryogenic atomically resolved scanning tunneling microscopy/spectroscopy, we obtained atomic-site dependent surface density of states, work function, and the pairing gap in the monolayer FeSe on the SrTiO<sub>3</sub>(001)–(√13 × √13)–R33.7° surface. Our results disclosed the out-of-plane Se–Fe–Se triple layer gradient variation, switched DOS for Fe sites on and off TiO<sub>5□</sub>, and inequivalent Fe sublattices, which gives global spatial modulation of pairing gap contaminants with the (√13 × √13) pattern. Moreover, the coherent lattice coupling induces strong inversion asymmetry and in-plane anisotropy in the monolayer FeSe, which is demonstrated to correlate with the particle–hole asymmetry in coherence peaks. These results disclose delicate atomic-scale correlations between pairing and lattice-electronic coupling in the Bardeen–Cooper–Schrieffer to Bose–Einstein condensation crossover regime, providing insights into understanding the pairing mechanism of multiorbital superconductivity.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c02627\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c02627","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

FeSe/TiO2-δ界面耦合诱导了单层FeSe薄膜的高温超导性。利用低温原子分辨扫描隧道显微镜/光谱仪,我们获得了SrTiO3(001)-(√13 × √13)-R33.7°表面上单层FeSe的原子位依赖表面态密度、功函数和配对间隙。我们的研究结果揭示了面外硒-铁-硒三层梯度变化、TiO5□上和TiO5□外铁位点的DOS切换以及不等价的铁亚晶格,这使得配对间隙污染物与(√13 × √13)模式产生了全局空间调制。此外,相干晶格耦合在单层硒化铁中引起了强烈的反转不对称和面内各向异性,这被证明与相干峰中的粒子-空穴不对称相关。这些结果揭示了在巴丁-库珀-施里弗到玻色-爱因斯坦凝聚交叉机制中配对与晶格电子耦合之间微妙的原子尺度相关性,为理解多轨道超导的配对机制提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atomic-Site-Dependent Pairing Gap in Monolayer FeSe/SrTiO3(001)–(√13 × √13)

The interfacial FeSe/TiO2−δ coupling induces high-temperature superconductivity in monolayer FeSe films. Using cryogenic atomically resolved scanning tunneling microscopy/spectroscopy, we obtained atomic-site dependent surface density of states, work function, and the pairing gap in the monolayer FeSe on the SrTiO3(001)–(√13 × √13)–R33.7° surface. Our results disclosed the out-of-plane Se–Fe–Se triple layer gradient variation, switched DOS for Fe sites on and off TiO5□, and inequivalent Fe sublattices, which gives global spatial modulation of pairing gap contaminants with the (√13 × √13) pattern. Moreover, the coherent lattice coupling induces strong inversion asymmetry and in-plane anisotropy in the monolayer FeSe, which is demonstrated to correlate with the particle–hole asymmetry in coherence peaks. These results disclose delicate atomic-scale correlations between pairing and lattice-electronic coupling in the Bardeen–Cooper–Schrieffer to Bose–Einstein condensation crossover regime, providing insights into understanding the pairing mechanism of multiorbital superconductivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Graphene Bilayer as a Template for Manufacturing Novel Encapsulated 2D Materials. Octahedral vs Tiara-like Pd6(SR)12 Clusters. Scalable Multistep Imprinting of Multiplexed Optical Anti-counterfeiting Patterns with Hierarchical Structures. Transcutaneous Immunization of 1D Rod-Like Tobacco-Mosaic-Virus-Based Peptide Vaccine via Tip-Loaded Dissolving Microneedles. Vanadate-Mediated Mismatch Configuration over the Reconstructed Nickel-Iron Electrocatalyst for Boosting Alkaline Oxygen Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1