基因组挖掘新的烯啶抗生素。

IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Opinion in Chemical Biology Pub Date : 2024-06-24 DOI:10.1016/j.cbpa.2024.102481
Esther J. Han , Mohammad R. Seyedsayamdost
{"title":"基因组挖掘新的烯啶抗生素。","authors":"Esther J. Han ,&nbsp;Mohammad R. Seyedsayamdost","doi":"10.1016/j.cbpa.2024.102481","DOIUrl":null,"url":null,"abstract":"<div><p>Enediyne antibiotics epitomize nature's chemical creativity. They contain intricate molecular architectures that are coupled with potent biological activities involving double-stranded DNA scission. The recent explosion in microbial genome sequences has revealed a large reservoir of novel enediynes. However, while hundreds of enediyne biosynthetic gene clusters (BGCs) can be detected, less than two dozen natural products have been characterized to date as many clusters remain silent or sparingly expressed under standard laboratory growth conditions. This review focuses on four distinct strategies, which have recently enabled discoveries of novel enediynes: phenotypic screening from rare sources, biosynthetic manipulation, genomic signature-based PCR screening, and DNA-cleavage assays coupled with activation of silent BGCs via high-throughput elicitor screening. With an abundance of enediyne BGCs and emerging approaches for accessing them, new enediyne natural products and further insights into their biogenesis are imminent.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome mining for new enediyne antibiotics\",\"authors\":\"Esther J. Han ,&nbsp;Mohammad R. Seyedsayamdost\",\"doi\":\"10.1016/j.cbpa.2024.102481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enediyne antibiotics epitomize nature's chemical creativity. They contain intricate molecular architectures that are coupled with potent biological activities involving double-stranded DNA scission. The recent explosion in microbial genome sequences has revealed a large reservoir of novel enediynes. However, while hundreds of enediyne biosynthetic gene clusters (BGCs) can be detected, less than two dozen natural products have been characterized to date as many clusters remain silent or sparingly expressed under standard laboratory growth conditions. This review focuses on four distinct strategies, which have recently enabled discoveries of novel enediynes: phenotypic screening from rare sources, biosynthetic manipulation, genomic signature-based PCR screening, and DNA-cleavage assays coupled with activation of silent BGCs via high-throughput elicitor screening. With an abundance of enediyne BGCs and emerging approaches for accessing them, new enediyne natural products and further insights into their biogenesis are imminent.</p></div>\",\"PeriodicalId\":291,\"journal\":{\"name\":\"Current Opinion in Chemical Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367593124000577\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593124000577","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

烯啶抗生素是大自然化学创造力的缩影。它们含有复杂的分子结构,并具有涉及双链 DNA 分裂的强大生物活性。最近,微生物基因组序列的爆炸性增长揭示了大量新型烯二炔类化合物。然而,虽然可以检测到数百个烯二炔生物合成基因簇(BGCs),但迄今表征的天然产物却不足二十种,因为许多基因簇在标准实验室生长条件下保持沉默或很少表达。本综述将重点介绍最近发现新型烯二炔类化合物的四种不同策略:稀有来源的表型筛选、生物合成操作、基于基因组特征的 PCR 筛选,以及通过高通量诱导剂筛选激活沉默 BGCs 的 DNA 裂解测定。随着烯二炔 BGCs 的丰富和获取它们的新方法的出现,新的烯二炔天然产品和对其生物发生的进一步了解迫在眉睫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genome mining for new enediyne antibiotics

Enediyne antibiotics epitomize nature's chemical creativity. They contain intricate molecular architectures that are coupled with potent biological activities involving double-stranded DNA scission. The recent explosion in microbial genome sequences has revealed a large reservoir of novel enediynes. However, while hundreds of enediyne biosynthetic gene clusters (BGCs) can be detected, less than two dozen natural products have been characterized to date as many clusters remain silent or sparingly expressed under standard laboratory growth conditions. This review focuses on four distinct strategies, which have recently enabled discoveries of novel enediynes: phenotypic screening from rare sources, biosynthetic manipulation, genomic signature-based PCR screening, and DNA-cleavage assays coupled with activation of silent BGCs via high-throughput elicitor screening. With an abundance of enediyne BGCs and emerging approaches for accessing them, new enediyne natural products and further insights into their biogenesis are imminent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Chemical Biology
Current Opinion in Chemical Biology 生物-生化与分子生物学
CiteScore
13.30
自引率
1.30%
发文量
113
审稿时长
74 days
期刊介绍: COCHBI (Current Opinion in Chemical Biology) is a systematic review journal designed to offer specialists a unique and educational platform. Its goal is to help professionals stay informed about the growing volume of information in the field of Chemical Biology through systematic reviews.
期刊最新文献
Therapeutic synthetic anion transporters Editorial Board Endogenous electrophiles and peroxymonocarbonate can link tyrosine phosphorylation cascades with the cytosolic TXNRD1 selenoprotein and the KEAP1/NRF2 system An expanded molecular and systems toolbox for imaging, mapping, and controlling local translation Myeloid C-type lectin receptors in host–pathogen interactions and glycan-based targeting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1