SPACA6P-AS:乳腺癌病理生物学和治疗学的开拓者。

IF 5.3 2区 医学 Q2 CELL BIOLOGY Cell Biology and Toxicology Pub Date : 2024-06-26 DOI:10.1007/s10565-024-09870-9
Wenjie Feng, Yiling Jiang, Lijun Zeng, Yuhan Ouyang, Hailong Li, Yuanbin Tang, Lunqi Luo, Lianjie Ouyang, Liming Xie, Yeru Tan, Yuehua Li
{"title":"SPACA6P-AS:乳腺癌病理生物学和治疗学的开拓者。","authors":"Wenjie Feng, Yiling Jiang, Lijun Zeng, Yuhan Ouyang, Hailong Li, Yuanbin Tang, Lunqi Luo, Lianjie Ouyang, Liming Xie, Yeru Tan, Yuehua Li","doi":"10.1007/s10565-024-09870-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The primary objective of this investigation is to delve into the involvement of the long noncoding RNA (lncRNA) SPACA6P-AS in breast cancer (BC) development, focusing on its expression pattern, association with clinical-pathological features, impact on prognosis, as well as its molecular and immunological implications.</p><p><strong>Methods: </strong>Bioinformatics analysis was conducted utilizing RNA sequencing data of 1083 BC patients from the TCGA database. Functional exploration of SPACA6P-AS was carried out through the construction of survival curves, GO and KEGG enrichment analysis, and single-sample gene set enrichment analysis (ssGSEA). Furthermore, its functionality was validated through in vitro cell experiments and in vivo nude mouse model experiments.</p><p><strong>Results: </strong>SPACA6P-AS showed a remarkable increase in expression levels in BC tissues (p < 0.001) and demonstrated a close relationship to poor prognosis (overall survival HR = 1.616, progression-free interval HR = 1.40, disease-specific survival HR = 1.54). Enrichment analysis revealed that SPACA6P-AS could impact biological functions such as protease regulation, endopeptidase inhibitor activity, taste receptor activity, taste transduction, and maturity-onset diabetes of the young pathway. ssGSEA analysis indicated a negative correlation between SPACA6P-AS expression and immune cell infiltration like dendritic cells and neutrophils, while a positive correlation was observed with central memory T cells and T helper 2 cells. Results from in vitro and in vivo experiments illustrated that silencing SPACA6P-AS significantly inhibited the proliferation, migration, and invasion capabilities of BC cells. In vitro experiments also highlighted that dendritic cells with silenced SPACA6P-AS exhibited enhanced capabilities in promoting the proliferation of autologous CD3 + T cells and cytokine secretion. These discoveries elucidate the potential multifaceted roles of SPACA6P-AS in BC, including its potential involvement in modulating immune cell infiltration in the tumor microenvironment.</p><p><strong>Conclusion: </strong>The high expression of lncRNA SPACA6P-AS in BC is closely linked to poor prognosis and may facilitate tumor progression by influencing specific biological processes, signaling pathways, and the immune microenvironment. The regulatory role of SPACA6P-AS positions it as a prospective biomarker and target for therapeutic approaches for BC diagnosis and intervention.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"49"},"PeriodicalIF":5.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208203/pdf/","citationCount":"0","resultStr":"{\"title\":\"SPACA6P-AS: a trailblazer in breast cancer pathobiology and therapeutics.\",\"authors\":\"Wenjie Feng, Yiling Jiang, Lijun Zeng, Yuhan Ouyang, Hailong Li, Yuanbin Tang, Lunqi Luo, Lianjie Ouyang, Liming Xie, Yeru Tan, Yuehua Li\",\"doi\":\"10.1007/s10565-024-09870-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The primary objective of this investigation is to delve into the involvement of the long noncoding RNA (lncRNA) SPACA6P-AS in breast cancer (BC) development, focusing on its expression pattern, association with clinical-pathological features, impact on prognosis, as well as its molecular and immunological implications.</p><p><strong>Methods: </strong>Bioinformatics analysis was conducted utilizing RNA sequencing data of 1083 BC patients from the TCGA database. Functional exploration of SPACA6P-AS was carried out through the construction of survival curves, GO and KEGG enrichment analysis, and single-sample gene set enrichment analysis (ssGSEA). Furthermore, its functionality was validated through in vitro cell experiments and in vivo nude mouse model experiments.</p><p><strong>Results: </strong>SPACA6P-AS showed a remarkable increase in expression levels in BC tissues (p < 0.001) and demonstrated a close relationship to poor prognosis (overall survival HR = 1.616, progression-free interval HR = 1.40, disease-specific survival HR = 1.54). Enrichment analysis revealed that SPACA6P-AS could impact biological functions such as protease regulation, endopeptidase inhibitor activity, taste receptor activity, taste transduction, and maturity-onset diabetes of the young pathway. ssGSEA analysis indicated a negative correlation between SPACA6P-AS expression and immune cell infiltration like dendritic cells and neutrophils, while a positive correlation was observed with central memory T cells and T helper 2 cells. Results from in vitro and in vivo experiments illustrated that silencing SPACA6P-AS significantly inhibited the proliferation, migration, and invasion capabilities of BC cells. In vitro experiments also highlighted that dendritic cells with silenced SPACA6P-AS exhibited enhanced capabilities in promoting the proliferation of autologous CD3 + T cells and cytokine secretion. These discoveries elucidate the potential multifaceted roles of SPACA6P-AS in BC, including its potential involvement in modulating immune cell infiltration in the tumor microenvironment.</p><p><strong>Conclusion: </strong>The high expression of lncRNA SPACA6P-AS in BC is closely linked to poor prognosis and may facilitate tumor progression by influencing specific biological processes, signaling pathways, and the immune microenvironment. The regulatory role of SPACA6P-AS positions it as a prospective biomarker and target for therapeutic approaches for BC diagnosis and intervention.</p>\",\"PeriodicalId\":9672,\"journal\":{\"name\":\"Cell Biology and Toxicology\",\"volume\":\"40 1\",\"pages\":\"49\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208203/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology and Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10565-024-09870-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-024-09870-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究目的本研究的主要目的是深入研究长非编码RNA(lncRNA)SPACA6P-AS参与乳腺癌(BC)发展的情况,重点关注其表达模式、与临床病理特征的关联、对预后的影响及其分子和免疫学意义:方法:利用 TCGA 数据库中 1083 例 BC 患者的 RNA 测序数据进行生物信息学分析。通过构建生存曲线、GO和KEGG富集分析以及单样本基因组富集分析(ssGSEA),对SPACA6P-AS进行了功能探索。此外,还通过体外细胞实验和体内裸鼠模型实验验证了其功能:结果:SPACA6P-AS在BC组织中的表达水平显著增加(p 结论:SPACA6P-AS在BC组织中的表达水平显著增加:lncRNA SPACA6P-AS 在 BC 中的高表达与预后不良密切相关,并可能通过影响特定的生物学过程、信号通路和免疫微环境来促进肿瘤的进展。SPACA6P-AS 的调控作用将其定位为一种前瞻性生物标记物,以及 BC 诊断和干预治疗方法的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPACA6P-AS: a trailblazer in breast cancer pathobiology and therapeutics.

Objective: The primary objective of this investigation is to delve into the involvement of the long noncoding RNA (lncRNA) SPACA6P-AS in breast cancer (BC) development, focusing on its expression pattern, association with clinical-pathological features, impact on prognosis, as well as its molecular and immunological implications.

Methods: Bioinformatics analysis was conducted utilizing RNA sequencing data of 1083 BC patients from the TCGA database. Functional exploration of SPACA6P-AS was carried out through the construction of survival curves, GO and KEGG enrichment analysis, and single-sample gene set enrichment analysis (ssGSEA). Furthermore, its functionality was validated through in vitro cell experiments and in vivo nude mouse model experiments.

Results: SPACA6P-AS showed a remarkable increase in expression levels in BC tissues (p < 0.001) and demonstrated a close relationship to poor prognosis (overall survival HR = 1.616, progression-free interval HR = 1.40, disease-specific survival HR = 1.54). Enrichment analysis revealed that SPACA6P-AS could impact biological functions such as protease regulation, endopeptidase inhibitor activity, taste receptor activity, taste transduction, and maturity-onset diabetes of the young pathway. ssGSEA analysis indicated a negative correlation between SPACA6P-AS expression and immune cell infiltration like dendritic cells and neutrophils, while a positive correlation was observed with central memory T cells and T helper 2 cells. Results from in vitro and in vivo experiments illustrated that silencing SPACA6P-AS significantly inhibited the proliferation, migration, and invasion capabilities of BC cells. In vitro experiments also highlighted that dendritic cells with silenced SPACA6P-AS exhibited enhanced capabilities in promoting the proliferation of autologous CD3 + T cells and cytokine secretion. These discoveries elucidate the potential multifaceted roles of SPACA6P-AS in BC, including its potential involvement in modulating immune cell infiltration in the tumor microenvironment.

Conclusion: The high expression of lncRNA SPACA6P-AS in BC is closely linked to poor prognosis and may facilitate tumor progression by influencing specific biological processes, signaling pathways, and the immune microenvironment. The regulatory role of SPACA6P-AS positions it as a prospective biomarker and target for therapeutic approaches for BC diagnosis and intervention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biology and Toxicology
Cell Biology and Toxicology 生物-毒理学
CiteScore
9.90
自引率
4.90%
发文量
101
审稿时长
>12 weeks
期刊介绍: Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.
期刊最新文献
ASPP2 deficiency attenuates lipid accumulation through the PPARγ pathway in alcoholic liver injury. Advancing gastric cancer treatment: nanotechnology innovations and future prospects. The pivotal role of ZNF384: driving the malignant behavior of serous ovarian cancer cells via the LIN28B/UBD axis. ALKBH5 insufficiency protects against ferroptosis-driven cisplatin-induced renal cytotoxicity. Correction to: Activation of lipophagy ameliorates cadmium‑induced neural tube defects via reducing low density lipoprotein cholesterol levels in mouse placentas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1