siRNA 治疗糖尿病神经病变:障碍与传递技术。

IF 2.2 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Current molecular medicine Pub Date : 2024-06-24 DOI:10.2174/0115665240307413240531111140
Mohammad Shabib Akhtar, Nehal Mohsin, Ahmad Zahak, Khalid Altigani Awad Alkarem Ahmed, Yasir Alhazmi, Mohamad Taleuzzaman
{"title":"siRNA 治疗糖尿病神经病变:障碍与传递技术。","authors":"Mohammad Shabib Akhtar, Nehal Mohsin, Ahmad Zahak, Khalid Altigani Awad Alkarem Ahmed, Yasir Alhazmi, Mohamad Taleuzzaman","doi":"10.2174/0115665240307413240531111140","DOIUrl":null,"url":null,"abstract":"<p><p>Targeting genes using siRNA shows promise as an approach to alleviate symptoms of diabetic neuropathy. It focuses on neuropathies and distal symmetric polyneuropathy (DSPN) to explore the potential use of small interfering RNA (siRNA) as a treatment for diabetic neuropathy. Timely identification and management of neuropathy play a critical role in mitigating potential complications. RNAi success depends on understanding factors affecting small interfering RNA (siRNA) functionality and specificity. These include sequence space restrictions, structural and sequence features, mechanisms for nonspecific gene modulation, and chemical modifications. Addressing these factors enhances siRNA performance for efficient gene silencing and confidence in RNAi-mediated genomic studies. Diabetic retinopathy, particularly in South Asian, African, Latin American, and indigenous populations, is a significant concern due to its association with diabetes. Ethnicity plays a crucial role in its development and progression. Despite declining rates in the US, global trends remain concerning, and further research is needed to understand regional differences and reinforce ethnicity-based screening and treatment protocols. In this regard, siRNA emerges as a valuable instrument for early intervention strategies. While presenting promising therapeutic applications, siRNA utilization encounters challenges within insect pest control contexts, thereby providing insights into enhancing its delivery mechanisms for neuropathy treatment purposes. Recent advancements in delivery modalities, such as nanoparticles, allow for the controlled release of siRNA. More investigation is necessary to grasp the safety and efficacy of siRNA technology fully. It holds promise in transforming the treatment of diabetic neuropathy by honing in on particular genes and tackling issues such as inflammation and oxidative stress. Continuous advancements in delivery techniques have the potential to enhance patient results significantly. SiRNA targets genes in diabetic neuropathy, curbing nerve damage and pain and potentially preventing or delaying the condition. Customized treatments based on genetic variations hold promise for symptom management and enhancing quality of life.</p>","PeriodicalId":10873,"journal":{"name":"Current molecular medicine","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"siRNA Treatments for Diabetic Neuropathy: Obstacles and Delivery Techniques.\",\"authors\":\"Mohammad Shabib Akhtar, Nehal Mohsin, Ahmad Zahak, Khalid Altigani Awad Alkarem Ahmed, Yasir Alhazmi, Mohamad Taleuzzaman\",\"doi\":\"10.2174/0115665240307413240531111140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Targeting genes using siRNA shows promise as an approach to alleviate symptoms of diabetic neuropathy. It focuses on neuropathies and distal symmetric polyneuropathy (DSPN) to explore the potential use of small interfering RNA (siRNA) as a treatment for diabetic neuropathy. Timely identification and management of neuropathy play a critical role in mitigating potential complications. RNAi success depends on understanding factors affecting small interfering RNA (siRNA) functionality and specificity. These include sequence space restrictions, structural and sequence features, mechanisms for nonspecific gene modulation, and chemical modifications. Addressing these factors enhances siRNA performance for efficient gene silencing and confidence in RNAi-mediated genomic studies. Diabetic retinopathy, particularly in South Asian, African, Latin American, and indigenous populations, is a significant concern due to its association with diabetes. Ethnicity plays a crucial role in its development and progression. Despite declining rates in the US, global trends remain concerning, and further research is needed to understand regional differences and reinforce ethnicity-based screening and treatment protocols. In this regard, siRNA emerges as a valuable instrument for early intervention strategies. While presenting promising therapeutic applications, siRNA utilization encounters challenges within insect pest control contexts, thereby providing insights into enhancing its delivery mechanisms for neuropathy treatment purposes. Recent advancements in delivery modalities, such as nanoparticles, allow for the controlled release of siRNA. More investigation is necessary to grasp the safety and efficacy of siRNA technology fully. It holds promise in transforming the treatment of diabetic neuropathy by honing in on particular genes and tackling issues such as inflammation and oxidative stress. Continuous advancements in delivery techniques have the potential to enhance patient results significantly. SiRNA targets genes in diabetic neuropathy, curbing nerve damage and pain and potentially preventing or delaying the condition. Customized treatments based on genetic variations hold promise for symptom management and enhancing quality of life.</p>\",\"PeriodicalId\":10873,\"journal\":{\"name\":\"Current molecular medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115665240307413240531111140\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665240307413240531111140","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

使用 siRNA 靶向基因有望缓解糖尿病神经病变的症状。本研究以神经病变和远端对称性多发性神经病变(DSPN)为重点,探讨使用小干扰 RNA(siRNA)治疗糖尿病神经病变的可能性。及时发现和治疗神经病变对减轻潜在并发症起着至关重要的作用。RNAi 的成功取决于对影响小干扰 RNA (siRNA) 功能和特异性因素的了解。这些因素包括序列空间限制、结构和序列特征、非特异性基因调控机制以及化学修饰。解决这些因素可提高 siRNA 的性能,从而实现高效基因沉默,并增强 RNAi- 介导的基因组研究的信心。糖尿病视网膜病变,尤其是南亚、非洲、拉丁美洲和土著人群中的糖尿病视网膜病变,因其与糖尿病相关而备受关注。种族在其发展和恶化过程中起着至关重要的作用。尽管美国的发病率在下降,但全球趋势仍然令人担忧,需要进一步研究以了解地区差异,加强基于种族的筛查和治疗方案。在这方面,siRNA 成为早期干预策略的重要工具。虽然 siRNA 在治疗方面的应用前景广阔,但在昆虫害虫控制方面的应用也遇到了挑战,因此需要深入了解如何改进其输送机制,以达到治疗神经病变的目的。纳米颗粒等递送方式的最新进展允许控制 siRNA 的释放。要全面掌握 siRNA 技术的安全性和有效性,还需要进行更多的研究。siRNA 技术可用于治疗糖尿病神经病变,它能准确定位特定基因,解决炎症和氧化应激等问题,有望改变糖尿病神经病变的治疗方法。给药技术的不断进步有可能大大提高患者的治疗效果。SiRNA 可靶向糖尿病神经病变的基因,抑制神经损伤和疼痛,并有可能预防或延缓病情。基于基因变异的定制治疗有望控制症状并提高生活质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
siRNA Treatments for Diabetic Neuropathy: Obstacles and Delivery Techniques.

Targeting genes using siRNA shows promise as an approach to alleviate symptoms of diabetic neuropathy. It focuses on neuropathies and distal symmetric polyneuropathy (DSPN) to explore the potential use of small interfering RNA (siRNA) as a treatment for diabetic neuropathy. Timely identification and management of neuropathy play a critical role in mitigating potential complications. RNAi success depends on understanding factors affecting small interfering RNA (siRNA) functionality and specificity. These include sequence space restrictions, structural and sequence features, mechanisms for nonspecific gene modulation, and chemical modifications. Addressing these factors enhances siRNA performance for efficient gene silencing and confidence in RNAi-mediated genomic studies. Diabetic retinopathy, particularly in South Asian, African, Latin American, and indigenous populations, is a significant concern due to its association with diabetes. Ethnicity plays a crucial role in its development and progression. Despite declining rates in the US, global trends remain concerning, and further research is needed to understand regional differences and reinforce ethnicity-based screening and treatment protocols. In this regard, siRNA emerges as a valuable instrument for early intervention strategies. While presenting promising therapeutic applications, siRNA utilization encounters challenges within insect pest control contexts, thereby providing insights into enhancing its delivery mechanisms for neuropathy treatment purposes. Recent advancements in delivery modalities, such as nanoparticles, allow for the controlled release of siRNA. More investigation is necessary to grasp the safety and efficacy of siRNA technology fully. It holds promise in transforming the treatment of diabetic neuropathy by honing in on particular genes and tackling issues such as inflammation and oxidative stress. Continuous advancements in delivery techniques have the potential to enhance patient results significantly. SiRNA targets genes in diabetic neuropathy, curbing nerve damage and pain and potentially preventing or delaying the condition. Customized treatments based on genetic variations hold promise for symptom management and enhancing quality of life.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current molecular medicine
Current molecular medicine 医学-医学:研究与实验
CiteScore
5.00
自引率
4.00%
发文量
141
审稿时长
4-8 weeks
期刊介绍: Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews/ mini-reviews, original research articles, short communications/letters and drug clinical trial studies on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal invites guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.
期刊最新文献
Role of Nrf2 in Epilepsy Treatment. Exploring the Neuroprotective Potential of Icariin through Modulation of Neural Pathways in the Treatment of Neurological Diseases. Multiplex PCR System for the Diagnosis of Plague. Stem Cells as a Novel Source for Regenerative Medicinal Applications in Alzheimer's Disease: An Update. Fascin Inhibitor NP-G2-044 Decreases Cell Metastasis and Increases Overall Survival of Mice-Bearing Lung Cancers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1