{"title":"死海中的微生物群落及其潜在的生物技术应用。","authors":"Hala I Al-Daghistani, Sima Zein, Manal A Abbas","doi":"10.1080/19420889.2024.2369782","DOIUrl":null,"url":null,"abstract":"<p><p>The Dead Sea is unique compared to other extreme halophilic habitats. Its salinity exceeds 34%, and it is getting saltier. The Dead Sea environment is characterized by a dominance of divalent cations, with magnesium chloride (MgCl<sub>2</sub>) levels approaching the predicted 2.3 M upper limit for life, an acidic pH of 6.0, and high levels of absorbed ultraviolet radiation. Consequently, only organisms adapted to such a polyextreme environment can survive in the surface, sinkholes, sediments, muds, and underwater springs of the Dead Sea. Metagenomic sequence analysis and amino acid profiling indicated that the Dead Sea is predominantly composed of halophiles that have various adaptation mechanisms and produce metabolites that can be utilized for biotechnological purposes. A variety of products have been obtained from halophilic microorganisms isolated from the Dead Sea, such as antimicrobials, bioplastics, biofuels, extremozymes, retinal proteins, colored pigments, exopolysaccharides, and compatible solutes. These resources find applications in agriculture, food, biofuel production, industry, and bioremediation for the detoxification of wastewater and soil. Utilizing halophiles as a bioprocessing platform offers advantages such as reduced energy consumption, decreased freshwater demand, minimized capital investment, and continuous production.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":"17 1","pages":"2369782"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197920/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microbial communities in the Dead Sea and their potential biotechnological applications.\",\"authors\":\"Hala I Al-Daghistani, Sima Zein, Manal A Abbas\",\"doi\":\"10.1080/19420889.2024.2369782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Dead Sea is unique compared to other extreme halophilic habitats. Its salinity exceeds 34%, and it is getting saltier. The Dead Sea environment is characterized by a dominance of divalent cations, with magnesium chloride (MgCl<sub>2</sub>) levels approaching the predicted 2.3 M upper limit for life, an acidic pH of 6.0, and high levels of absorbed ultraviolet radiation. Consequently, only organisms adapted to such a polyextreme environment can survive in the surface, sinkholes, sediments, muds, and underwater springs of the Dead Sea. Metagenomic sequence analysis and amino acid profiling indicated that the Dead Sea is predominantly composed of halophiles that have various adaptation mechanisms and produce metabolites that can be utilized for biotechnological purposes. A variety of products have been obtained from halophilic microorganisms isolated from the Dead Sea, such as antimicrobials, bioplastics, biofuels, extremozymes, retinal proteins, colored pigments, exopolysaccharides, and compatible solutes. These resources find applications in agriculture, food, biofuel production, industry, and bioremediation for the detoxification of wastewater and soil. Utilizing halophiles as a bioprocessing platform offers advantages such as reduced energy consumption, decreased freshwater demand, minimized capital investment, and continuous production.</p>\",\"PeriodicalId\":39647,\"journal\":{\"name\":\"Communicative and Integrative Biology\",\"volume\":\"17 1\",\"pages\":\"2369782\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197920/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communicative and Integrative Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19420889.2024.2369782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communicative and Integrative Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19420889.2024.2369782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
摘要
与其他极端嗜卤生境相比,死海是独一无二的。死海的盐度超过 34%,而且还在不断升高。死海环境的特点是二价阳离子占主导地位,氯化镁(MgCl2)含量接近预测的 2.3 M 生命上限,酸性 pH 值为 6.0,紫外线辐射吸收量大。因此,只有适应这种多极端环境的生物才能在死海的地表、水坑、沉积物、泥浆和水下泉水中生存。元基因组序列分析和氨基酸分析表明,死海主要由具有各种适应机制的嗜卤生物组成,它们产生的代谢物可用于生物技术目的。从死海分离出来的嗜卤微生物已经产生了多种产品,如抗菌剂、生物塑料、生物燃料、极端酶、视网膜蛋白、有色色素、外多糖和相容性溶质。这些资源可应用于农业、食品、生物燃料生产、工业以及用于废水和土壤解毒的生物修复。利用嗜卤生物作为生物加工平台具有降低能耗、减少淡水需求、最大限度地减少资本投资和连续生产等优势。
Microbial communities in the Dead Sea and their potential biotechnological applications.
The Dead Sea is unique compared to other extreme halophilic habitats. Its salinity exceeds 34%, and it is getting saltier. The Dead Sea environment is characterized by a dominance of divalent cations, with magnesium chloride (MgCl2) levels approaching the predicted 2.3 M upper limit for life, an acidic pH of 6.0, and high levels of absorbed ultraviolet radiation. Consequently, only organisms adapted to such a polyextreme environment can survive in the surface, sinkholes, sediments, muds, and underwater springs of the Dead Sea. Metagenomic sequence analysis and amino acid profiling indicated that the Dead Sea is predominantly composed of halophiles that have various adaptation mechanisms and produce metabolites that can be utilized for biotechnological purposes. A variety of products have been obtained from halophilic microorganisms isolated from the Dead Sea, such as antimicrobials, bioplastics, biofuels, extremozymes, retinal proteins, colored pigments, exopolysaccharides, and compatible solutes. These resources find applications in agriculture, food, biofuel production, industry, and bioremediation for the detoxification of wastewater and soil. Utilizing halophiles as a bioprocessing platform offers advantages such as reduced energy consumption, decreased freshwater demand, minimized capital investment, and continuous production.