基于垂直运动的三电纳米发电机的性能优化与比较

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-06-26 DOI:10.1039/D4NR01588F
Wenwu Zhu, Jun Peng, Ao Qin, Kanglong Yuan, Boshi Zhu, Shuai Lang, Jiliang Ma, Chuang Sun and Xuefeng Chen
{"title":"基于垂直运动的三电纳米发电机的性能优化与比较","authors":"Wenwu Zhu, Jun Peng, Ao Qin, Kanglong Yuan, Boshi Zhu, Shuai Lang, Jiliang Ma, Chuang Sun and Xuefeng Chen","doi":"10.1039/D4NR01588F","DOIUrl":null,"url":null,"abstract":"<p >The vertical motion configuration is a common design in triboelectric nanogenerators (TENGs) for energy harvesting; however, the performance optimization and comparison are still vague between various vertical motion-based structures. In this paper, time-averaged power density is defined as a metric to compare the power output performances of vertically structured TENGs, including contact mode and freestanding mode. To ensure comparisons under the same circumstances, a novel sandwich-structured dielectric layer was designed to maintain a stable and consistent surface charge density, with an extra rotating triboelectric nanogenerator working as a charge pump. We also investigated the impact of parasitic capacitance, which is a primary source of error in theoretical optimization. The freestanding TENG (FTENG) with a single dielectric layer demonstrates superior power performance, even when accounting for the influence of parasitic capacitance. This work provides valuable insights and guidelines for the design of high-performance mechanical energy harvesting devices.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance optimization and comparison of vertical motion-based triboelectric nanogenerators†\",\"authors\":\"Wenwu Zhu, Jun Peng, Ao Qin, Kanglong Yuan, Boshi Zhu, Shuai Lang, Jiliang Ma, Chuang Sun and Xuefeng Chen\",\"doi\":\"10.1039/D4NR01588F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The vertical motion configuration is a common design in triboelectric nanogenerators (TENGs) for energy harvesting; however, the performance optimization and comparison are still vague between various vertical motion-based structures. In this paper, time-averaged power density is defined as a metric to compare the power output performances of vertically structured TENGs, including contact mode and freestanding mode. To ensure comparisons under the same circumstances, a novel sandwich-structured dielectric layer was designed to maintain a stable and consistent surface charge density, with an extra rotating triboelectric nanogenerator working as a charge pump. We also investigated the impact of parasitic capacitance, which is a primary source of error in theoretical optimization. The freestanding TENG (FTENG) with a single dielectric layer demonstrates superior power performance, even when accounting for the influence of parasitic capacitance. This work provides valuable insights and guidelines for the design of high-performance mechanical energy harvesting devices.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr01588f\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr01588f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

垂直运动结构是三电纳米发电机(TENG)用于能量收集的一种常见设计,但各种基于垂直运动结构的性能优化和比较仍然模糊不清。本文将时间平均功率密度定义为比较垂直结构 TENG 功率输出性能的指标,包括接触模式和独立模式。为确保在相同情况下进行比较,我们设计了一种新型夹层结构介电层,以保持稳定一致的表面电荷密度,并额外设计了一个旋转三电纳米发电机作为电荷泵。我们还研究了寄生电容的影响,寄生电容是理论优化误差的主要来源。即使考虑到寄生电容的影响,具有单介质层的独立式 TENG(FTENG)也表现出了卓越的功率性能。这项研究为高性能机械能量收集装置的设计提供了宝贵的见解和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance optimization and comparison of vertical motion-based triboelectric nanogenerators†

The vertical motion configuration is a common design in triboelectric nanogenerators (TENGs) for energy harvesting; however, the performance optimization and comparison are still vague between various vertical motion-based structures. In this paper, time-averaged power density is defined as a metric to compare the power output performances of vertically structured TENGs, including contact mode and freestanding mode. To ensure comparisons under the same circumstances, a novel sandwich-structured dielectric layer was designed to maintain a stable and consistent surface charge density, with an extra rotating triboelectric nanogenerator working as a charge pump. We also investigated the impact of parasitic capacitance, which is a primary source of error in theoretical optimization. The freestanding TENG (FTENG) with a single dielectric layer demonstrates superior power performance, even when accounting for the influence of parasitic capacitance. This work provides valuable insights and guidelines for the design of high-performance mechanical energy harvesting devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
CD56-targeted in vivo genetic engineering of natural killer cells mediates immunotherapy for acute myeloid leukemia. High Sensing Performance Hybrid Nanostructure Constructed via Nanoscale Confined Motion of Nanofiber and Nanoplatelet in Flexible Nanocomposite Sensor Nanoscopic visualization of microgel-immobilized cytochrome P450 enzymes and their local activity Metamagnetic transition and meta-stable magnetic state in Co-dopedFe3GaTe2 Perspectives on sustainable and efficient routes of nanoparticle synthesis: an exhaustive review on conventional and microplasma-assisted techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1