为酶促 N-GlcNAcylation 建立无细胞糖蛋白合成系统

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Biology Pub Date : 2024-06-27 DOI:10.1021/acschembio.4c00228
Madison A DeWinter, Derek A Wong, Regina Fernandez, Weston Kightlinger, Ariel Helms Thames, Matthew P DeLisa, Michael C Jewett
{"title":"为酶促 N-GlcNAcylation 建立无细胞糖蛋白合成系统","authors":"Madison A DeWinter, Derek A Wong, Regina Fernandez, Weston Kightlinger, Ariel Helms Thames, Matthew P DeLisa, Michael C Jewett","doi":"10.1021/acschembio.4c00228","DOIUrl":null,"url":null,"abstract":"<p><p><i>N</i>-linked glycosylation plays a key role in the efficacy of many therapeutic proteins. One limitation to the bacterial glycoengineering of human <i>N</i>-linked glycans is the difficulty of installing a single <i>N</i>-acetylglucosamine (GlcNAc), the reducing end sugar of many human-type glycans, onto asparagine in a single step (<i>N</i>-GlcNAcylation). Here, we develop an <i>in vitro</i> method for <i>N</i>-GlcNAcylating proteins using the oligosaccharyltransferase PglB from <i>Campylobacter jejuni</i>. We use cell-free protein synthesis (CFPS) to test promiscuous PglB variants previously reported in the literature for the ability to produce <i>N</i>-GlcNAc and successfully determine that PglB with an N311V mutation (PglB<sup>N311V</sup>) exhibits increased GlcNAc transferase activity relative to the wild-type enzyme. We then improve the transfer efficiency by producing CFPS extracts enriched with PglB<sup>N311V</sup> and further optimize the reaction conditions, achieving a 98.6 ± 0.5% glycosylation efficiency. We anticipate this method will expand the glycoengineering toolbox for therapeutic research and biomanufacturing.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishing a Cell-Free Glycoprotein Synthesis System for Enzymatic <i>N</i>-GlcNAcylation.\",\"authors\":\"Madison A DeWinter, Derek A Wong, Regina Fernandez, Weston Kightlinger, Ariel Helms Thames, Matthew P DeLisa, Michael C Jewett\",\"doi\":\"10.1021/acschembio.4c00228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>N</i>-linked glycosylation plays a key role in the efficacy of many therapeutic proteins. One limitation to the bacterial glycoengineering of human <i>N</i>-linked glycans is the difficulty of installing a single <i>N</i>-acetylglucosamine (GlcNAc), the reducing end sugar of many human-type glycans, onto asparagine in a single step (<i>N</i>-GlcNAcylation). Here, we develop an <i>in vitro</i> method for <i>N</i>-GlcNAcylating proteins using the oligosaccharyltransferase PglB from <i>Campylobacter jejuni</i>. We use cell-free protein synthesis (CFPS) to test promiscuous PglB variants previously reported in the literature for the ability to produce <i>N</i>-GlcNAc and successfully determine that PglB with an N311V mutation (PglB<sup>N311V</sup>) exhibits increased GlcNAc transferase activity relative to the wild-type enzyme. We then improve the transfer efficiency by producing CFPS extracts enriched with PglB<sup>N311V</sup> and further optimize the reaction conditions, achieving a 98.6 ± 0.5% glycosylation efficiency. We anticipate this method will expand the glycoengineering toolbox for therapeutic research and biomanufacturing.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acschembio.4c00228\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00228","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

N-连接糖基化在许多治疗蛋白的疗效中起着关键作用。细菌对人类 N-连接聚糖进行糖工程化的一个限制因素是很难在一个步骤中将单个 N-乙酰葡糖胺(GlcNAc)(许多人类型聚糖的还原端糖)安装到天冬酰胺上(N-GlcNAcylation)。在这里,我们利用空肠弯曲杆菌中的寡糖基转移酶 PglB 开发了一种体外 N-GlcNA 化蛋白质的方法。我们使用无细胞蛋白质合成(CFPS)来测试之前文献中报道的杂合 PglB 变体产生 N-GlcNAc 的能力,并成功确定 N311V 突变的 PglB(PglBN311V)与野生型酶相比具有更高的 GlcNAc 转移酶活性。然后,我们通过生产富含 PglBN311V 的 CFPS 提取物来提高转移效率,并进一步优化反应条件,使糖基化效率达到 98.6 ± 0.5%。我们预计这种方法将扩大治疗研究和生物制造的糖工程工具箱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Establishing a Cell-Free Glycoprotein Synthesis System for Enzymatic N-GlcNAcylation.

N-linked glycosylation plays a key role in the efficacy of many therapeutic proteins. One limitation to the bacterial glycoengineering of human N-linked glycans is the difficulty of installing a single N-acetylglucosamine (GlcNAc), the reducing end sugar of many human-type glycans, onto asparagine in a single step (N-GlcNAcylation). Here, we develop an in vitro method for N-GlcNAcylating proteins using the oligosaccharyltransferase PglB from Campylobacter jejuni. We use cell-free protein synthesis (CFPS) to test promiscuous PglB variants previously reported in the literature for the ability to produce N-GlcNAc and successfully determine that PglB with an N311V mutation (PglBN311V) exhibits increased GlcNAc transferase activity relative to the wild-type enzyme. We then improve the transfer efficiency by producing CFPS extracts enriched with PglBN311V and further optimize the reaction conditions, achieving a 98.6 ± 0.5% glycosylation efficiency. We anticipate this method will expand the glycoengineering toolbox for therapeutic research and biomanufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
期刊最新文献
Confounding Factors in Targeted Degradation of Short-Lived Proteins. ALTering Cancer by Triggering Telomere Replication Stress through the Stabilization of Promoter G-Quadruplex in SMARCAL1. Engineered Branaplam Aptamers Exploit Structural Elements from Natural Riboswitches. HCV 5-Methylcytosine Enhances Viral RNA Replication through Interaction with m5C Reader YBX1. Tyrosine Sulfation Modulates the Binding Affinity of Chemokine-Targeting Nanobodies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1