通过掺杂过渡金属调整 CsPbI3 包晶石纳米晶体中的欧杰重组动力学。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-06-27 DOI:10.1021/acs.nanolett.4c02032
Jie Meng, Zhenyun Lan*, Weihua Lin, Ivano E. Castelli, Tönu Pullerits* and Kaibo Zheng*, 
{"title":"通过掺杂过渡金属调整 CsPbI3 包晶石纳米晶体中的欧杰重组动力学。","authors":"Jie Meng,&nbsp;Zhenyun Lan*,&nbsp;Weihua Lin,&nbsp;Ivano E. Castelli,&nbsp;Tönu Pullerits* and Kaibo Zheng*,&nbsp;","doi":"10.1021/acs.nanolett.4c02032","DOIUrl":null,"url":null,"abstract":"<p >Auger recombination is a pivotal process for semiconductor nanocrystals (NCs), significantly affecting charge carrier generation and collection in optoelectronic devices. This process depends mainly on the NCs’ electronic structures. In our study, we investigated Auger recombination dynamics in manganese (Mn<sup>2+</sup>)-doped CsPbI<sub>3</sub> NCs using transient absorption (TA) spectroscopy combined with theoretical and experimental structural characterization. Our results show that Mn<sup>2+</sup> doping accelerates Auger recombination, reducing the biexciton lifetime from 146 to 74 ps with increasing Mn doping concentration up to 10%. This accelerated Auger recombination in Mn-doped NCs is attributed to increased band edge wave function overlap of excitons and a larger density of final states of Auger recombination due to Mn orbital involvement. Moreover, Mn doping reduces the dielectric screening of the excitons, which also contributes to the accelerated Auger recombination. Our study demonstrates the potential of element doping to regulate Auger recombination rates by modifying the materials’ electronic structure.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring Auger Recombination Dynamics in CsPbI3 Perovskite Nanocrystals via Transition Metal Doping\",\"authors\":\"Jie Meng,&nbsp;Zhenyun Lan*,&nbsp;Weihua Lin,&nbsp;Ivano E. Castelli,&nbsp;Tönu Pullerits* and Kaibo Zheng*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c02032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Auger recombination is a pivotal process for semiconductor nanocrystals (NCs), significantly affecting charge carrier generation and collection in optoelectronic devices. This process depends mainly on the NCs’ electronic structures. In our study, we investigated Auger recombination dynamics in manganese (Mn<sup>2+</sup>)-doped CsPbI<sub>3</sub> NCs using transient absorption (TA) spectroscopy combined with theoretical and experimental structural characterization. Our results show that Mn<sup>2+</sup> doping accelerates Auger recombination, reducing the biexciton lifetime from 146 to 74 ps with increasing Mn doping concentration up to 10%. This accelerated Auger recombination in Mn-doped NCs is attributed to increased band edge wave function overlap of excitons and a larger density of final states of Auger recombination due to Mn orbital involvement. Moreover, Mn doping reduces the dielectric screening of the excitons, which also contributes to the accelerated Auger recombination. Our study demonstrates the potential of element doping to regulate Auger recombination rates by modifying the materials’ electronic structure.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c02032\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c02032","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

奥杰尔重组是半导体纳米晶体(NCs)的一个关键过程,对光电设备中电荷载流子的产生和收集有重大影响。这一过程主要取决于 NCs 的电子结构。在我们的研究中,我们利用瞬态吸收(TA)光谱结合理论和实验结构特征,研究了掺杂锰(Mn2+)的 CsPbI3 NCs 中的奥杰尔重组动力学。我们的研究结果表明,Mn2+ 的掺杂加速了奥杰尔重组,随着 Mn 掺杂浓度的增加,双激子寿命从 146 ps 下降到 74 ps,最高可达 10%。掺杂锰的 NC 中奥吉尔重组加速的原因是激子的带边波函数重叠增加,以及锰轨道参与导致奥吉尔重组的终态密度增大。此外,掺杂锰降低了激子的介电屏蔽,这也有助于加速奥杰尔重组。我们的研究证明了元素掺杂可以通过改变材料的电子结构来调节欧杰重组速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tailoring Auger Recombination Dynamics in CsPbI3 Perovskite Nanocrystals via Transition Metal Doping

Auger recombination is a pivotal process for semiconductor nanocrystals (NCs), significantly affecting charge carrier generation and collection in optoelectronic devices. This process depends mainly on the NCs’ electronic structures. In our study, we investigated Auger recombination dynamics in manganese (Mn2+)-doped CsPbI3 NCs using transient absorption (TA) spectroscopy combined with theoretical and experimental structural characterization. Our results show that Mn2+ doping accelerates Auger recombination, reducing the biexciton lifetime from 146 to 74 ps with increasing Mn doping concentration up to 10%. This accelerated Auger recombination in Mn-doped NCs is attributed to increased band edge wave function overlap of excitons and a larger density of final states of Auger recombination due to Mn orbital involvement. Moreover, Mn doping reduces the dielectric screening of the excitons, which also contributes to the accelerated Auger recombination. Our study demonstrates the potential of element doping to regulate Auger recombination rates by modifying the materials’ electronic structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Graphene Bilayer as a Template for Manufacturing Novel Encapsulated 2D Materials. Octahedral vs Tiara-like Pd6(SR)12 Clusters. Scalable Multistep Imprinting of Multiplexed Optical Anti-counterfeiting Patterns with Hierarchical Structures. Transcutaneous Immunization of 1D Rod-Like Tobacco-Mosaic-Virus-Based Peptide Vaccine via Tip-Loaded Dissolving Microneedles. Vanadate-Mediated Mismatch Configuration over the Reconstructed Nickel-Iron Electrocatalyst for Boosting Alkaline Oxygen Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1