光合阿米巴保利内氏虫色球的假定二氧化碳输送系统的证据。

IF 3.6 4区 生物学 Q2 ENVIRONMENTAL SCIENCES Environmental Microbiology Reports Pub Date : 2024-06-23 DOI:10.1111/1758-2229.13304
Arwa Gabr, Timothy G. Stephens, John R. Reinfelder, Pinky Liau, Victoria Calatrava, Arthur R. Grossman, Debashish Bhattacharya
{"title":"光合阿米巴保利内氏虫色球的假定二氧化碳输送系统的证据。","authors":"Arwa Gabr,&nbsp;Timothy G. Stephens,&nbsp;John R. Reinfelder,&nbsp;Pinky Liau,&nbsp;Victoria Calatrava,&nbsp;Arthur R. Grossman,&nbsp;Debashish Bhattacharya","doi":"10.1111/1758-2229.13304","DOIUrl":null,"url":null,"abstract":"<p>The photosynthetic amoeba, <i>Paulinella</i> provides a recent (ca. 120 Mya) example of primary plastid endosymbiosis. Given the extensive data demonstrating host lineage-driven endosymbiont integration, we analysed nuclear genome and transcriptome data to investigate mechanisms that may have evolved in <i>Paulinella micropora</i> KR01 (hereinafter, KR01) to maintain photosynthetic function in the novel organelle, the chromatophore. The chromatophore is of α-cyanobacterial provenance and has undergone massive gene loss due to Muller's ratchet, but still retains genes that encode the ancestral α-carboxysome and the shell carbonic anhydrase, two critical components of the biophysical CO<sub>2</sub> concentrating mechanism (CCM) in cyanobacteria. We identified KR01 nuclear genes potentially involved in the CCM that arose via duplication and divergence and are upregulated in response to high light and downregulated under elevated CO<sub>2</sub>. We speculate that these genes may comprise a novel CO<sub>2</sub> delivery system (i.e., a biochemical CCM) to promote the turnover of the RuBisCO carboxylation reaction and counteract photorespiration. We posit that KR01 has an inefficient photorespiratory system that cannot fully recycle the C<sub>2</sub> product of RuBisCO oxygenation back to the Calvin-Benson cycle. Nonetheless, both these systems appear to be sufficient to allow <i>Paulinella</i> to persist in environments dominated by faster-growing phototrophs.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194058/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evidence of a putative CO2 delivery system to the chromatophore in the photosynthetic amoeba Paulinella\",\"authors\":\"Arwa Gabr,&nbsp;Timothy G. Stephens,&nbsp;John R. Reinfelder,&nbsp;Pinky Liau,&nbsp;Victoria Calatrava,&nbsp;Arthur R. Grossman,&nbsp;Debashish Bhattacharya\",\"doi\":\"10.1111/1758-2229.13304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The photosynthetic amoeba, <i>Paulinella</i> provides a recent (ca. 120 Mya) example of primary plastid endosymbiosis. Given the extensive data demonstrating host lineage-driven endosymbiont integration, we analysed nuclear genome and transcriptome data to investigate mechanisms that may have evolved in <i>Paulinella micropora</i> KR01 (hereinafter, KR01) to maintain photosynthetic function in the novel organelle, the chromatophore. The chromatophore is of α-cyanobacterial provenance and has undergone massive gene loss due to Muller's ratchet, but still retains genes that encode the ancestral α-carboxysome and the shell carbonic anhydrase, two critical components of the biophysical CO<sub>2</sub> concentrating mechanism (CCM) in cyanobacteria. We identified KR01 nuclear genes potentially involved in the CCM that arose via duplication and divergence and are upregulated in response to high light and downregulated under elevated CO<sub>2</sub>. We speculate that these genes may comprise a novel CO<sub>2</sub> delivery system (i.e., a biochemical CCM) to promote the turnover of the RuBisCO carboxylation reaction and counteract photorespiration. We posit that KR01 has an inefficient photorespiratory system that cannot fully recycle the C<sub>2</sub> product of RuBisCO oxygenation back to the Calvin-Benson cycle. Nonetheless, both these systems appear to be sufficient to allow <i>Paulinella</i> to persist in environments dominated by faster-growing phototrophs.</p>\",\"PeriodicalId\":163,\"journal\":{\"name\":\"Environmental Microbiology Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194058/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.13304\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.13304","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

光合阿米巴原生质体内共生是最近(约120万年前)发生的。鉴于大量数据表明宿主品系驱动了内共生体的整合,我们分析了核基因组和转录组数据,以研究在小孢保林虫 KR01(以下简称 KR01)中可能进化出的机制,从而在新型细胞器--染色质中维持光合功能。色层体起源于α-蓝藻,由于穆勒棘轮作用,色层体经历了大量基因丢失,但仍保留了编码祖先α-羧酶体和壳碳酸酐酶的基因,这两种基因是蓝藻生物物理二氧化碳浓缩机制(CCM)的两个关键组成部分。我们发现了可能参与 CCM 的 KR01 核基因,这些基因通过复制和分化产生,在强光下上调,而在 CO2 升高时下调。我们推测这些基因可能组成了一个新的二氧化碳输送系统(即生化 CCM),以促进 RuBisCO 羧化反应的周转并抵消光呼吸。我们认为,KR01 的光呼吸系统效率低下,无法将 RuBisCO 氧合反应的 C2 产物完全循环回卡尔文-本森循环。不过,这两个系统似乎都足以让宝莲灯菌在生长较快的光营养体占主导地位的环境中存活下来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evidence of a putative CO2 delivery system to the chromatophore in the photosynthetic amoeba Paulinella

The photosynthetic amoeba, Paulinella provides a recent (ca. 120 Mya) example of primary plastid endosymbiosis. Given the extensive data demonstrating host lineage-driven endosymbiont integration, we analysed nuclear genome and transcriptome data to investigate mechanisms that may have evolved in Paulinella micropora KR01 (hereinafter, KR01) to maintain photosynthetic function in the novel organelle, the chromatophore. The chromatophore is of α-cyanobacterial provenance and has undergone massive gene loss due to Muller's ratchet, but still retains genes that encode the ancestral α-carboxysome and the shell carbonic anhydrase, two critical components of the biophysical CO2 concentrating mechanism (CCM) in cyanobacteria. We identified KR01 nuclear genes potentially involved in the CCM that arose via duplication and divergence and are upregulated in response to high light and downregulated under elevated CO2. We speculate that these genes may comprise a novel CO2 delivery system (i.e., a biochemical CCM) to promote the turnover of the RuBisCO carboxylation reaction and counteract photorespiration. We posit that KR01 has an inefficient photorespiratory system that cannot fully recycle the C2 product of RuBisCO oxygenation back to the Calvin-Benson cycle. Nonetheless, both these systems appear to be sufficient to allow Paulinella to persist in environments dominated by faster-growing phototrophs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Microbiology Reports
Environmental Microbiology Reports ENVIRONMENTAL SCIENCES-MICROBIOLOGY
CiteScore
6.00
自引率
3.00%
发文量
91
审稿时长
3.0 months
期刊介绍: The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side. Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.
期刊最新文献
Seasonal dynamics of bacterial community structure and function in the surf zone seawater of a recreational beach in Ostend, Belgium. Subtle changes in topsoil microbial communities of drained forested peatlands after prolonged drought. Actinorhizal plants and Frankiaceae: The overlooked future of phytoremediation Issue Information Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1