Lucia Maestre-Carballa, Vicente Navarro-López, Manuel Martinez-Garcia
{"title":"通过 \"一个健康 \"视角观察城市热点地区空气中的抗药性元基因组。","authors":"Lucia Maestre-Carballa, Vicente Navarro-López, Manuel Martinez-Garcia","doi":"10.1111/1758-2229.13306","DOIUrl":null,"url":null,"abstract":"<p>Human activities are a significant contributor to the spread of antibiotic resistance genes (ARGs), which pose a serious threat to human health. These ARGs can be transmitted through various pathways, including air, within the context of One Health. This study used metagenomics to monitor the resistomes in urban air from two critical locations: a wastewater treatment plant and a hospital, both indoor and outdoor. The presence of cell-like structures was confirmed through fluorescence microscopy. The metagenomic analysis revealed a wide variety of ARGs and a high diversity of antibiotic-resistant bacteria in the airborne particles collected. The wastewater treatment plant showed higher relative abundances with 32 ARG hits per Gb and m<sup>3</sup>, followed by the main entrance of the hospital (indoor) with ≈5 ARG hits per Gb and m<sup>3</sup>. The hospital entrance exhibited the highest ARG richness, with a total of 152 different ARGs classified into nine categories of antibiotic resistance. Common commensal and pathogenic bacteria carrying ARGs, such as <i>Moraxella</i>, <i>Staphylococcus</i> and <i>Micrococcus</i>, were detected in the indoor airborne particles of the hospital. Interestingly, no ARGs were shared among all the samples analysed, indicating a highly variable dynamic of airborne resistomes. Furthermore, the study found no ARGs in the airborne viral fractions analysed, suggesting that airborne viruses play a negligible role in the dissemination of ARGs.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194455/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metagenomic airborne resistome from urban hot spots through the One Health lens\",\"authors\":\"Lucia Maestre-Carballa, Vicente Navarro-López, Manuel Martinez-Garcia\",\"doi\":\"10.1111/1758-2229.13306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human activities are a significant contributor to the spread of antibiotic resistance genes (ARGs), which pose a serious threat to human health. These ARGs can be transmitted through various pathways, including air, within the context of One Health. This study used metagenomics to monitor the resistomes in urban air from two critical locations: a wastewater treatment plant and a hospital, both indoor and outdoor. The presence of cell-like structures was confirmed through fluorescence microscopy. The metagenomic analysis revealed a wide variety of ARGs and a high diversity of antibiotic-resistant bacteria in the airborne particles collected. The wastewater treatment plant showed higher relative abundances with 32 ARG hits per Gb and m<sup>3</sup>, followed by the main entrance of the hospital (indoor) with ≈5 ARG hits per Gb and m<sup>3</sup>. The hospital entrance exhibited the highest ARG richness, with a total of 152 different ARGs classified into nine categories of antibiotic resistance. Common commensal and pathogenic bacteria carrying ARGs, such as <i>Moraxella</i>, <i>Staphylococcus</i> and <i>Micrococcus</i>, were detected in the indoor airborne particles of the hospital. Interestingly, no ARGs were shared among all the samples analysed, indicating a highly variable dynamic of airborne resistomes. Furthermore, the study found no ARGs in the airborne viral fractions analysed, suggesting that airborne viruses play a negligible role in the dissemination of ARGs.</p>\",\"PeriodicalId\":163,\"journal\":{\"name\":\"Environmental Microbiology Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194455/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.13306\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.13306","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Metagenomic airborne resistome from urban hot spots through the One Health lens
Human activities are a significant contributor to the spread of antibiotic resistance genes (ARGs), which pose a serious threat to human health. These ARGs can be transmitted through various pathways, including air, within the context of One Health. This study used metagenomics to monitor the resistomes in urban air from two critical locations: a wastewater treatment plant and a hospital, both indoor and outdoor. The presence of cell-like structures was confirmed through fluorescence microscopy. The metagenomic analysis revealed a wide variety of ARGs and a high diversity of antibiotic-resistant bacteria in the airborne particles collected. The wastewater treatment plant showed higher relative abundances with 32 ARG hits per Gb and m3, followed by the main entrance of the hospital (indoor) with ≈5 ARG hits per Gb and m3. The hospital entrance exhibited the highest ARG richness, with a total of 152 different ARGs classified into nine categories of antibiotic resistance. Common commensal and pathogenic bacteria carrying ARGs, such as Moraxella, Staphylococcus and Micrococcus, were detected in the indoor airborne particles of the hospital. Interestingly, no ARGs were shared among all the samples analysed, indicating a highly variable dynamic of airborne resistomes. Furthermore, the study found no ARGs in the airborne viral fractions analysed, suggesting that airborne viruses play a negligible role in the dissemination of ARGs.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.