利用基于质谱的 N-糖蛋白组学分析突变引发的糖基化增益。

IF 1.8 3区 化学 Q4 BIOCHEMICAL RESEARCH METHODS Rapid Communications in Mass Spectrometry Pub Date : 2024-06-24 DOI:10.1002/rcm.9838
Hailun Yang, Zhixin Tian
{"title":"利用基于质谱的 N-糖蛋白组学分析突变引发的糖基化增益。","authors":"Hailun Yang,&nbsp;Zhixin Tian","doi":"10.1002/rcm.9838","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <h3> Rationale</h3>\n \n <p>A general N-glycoproteomics analysis pipeline has been established for characterization of mutation-related gain-of-glycosylation (GoG) at intact N-glycopeptide molecular level, generating comprehensive site and structure information of N-glycosylation.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>This study focused on mutation-originated GoG using a mass spectrometry-based N-glycoproteomics analysis workflow. In brief, GoG intact N-glycopeptide databases were built, consisting of 2701 proteins (potential GoG N-glycosites and amino acids derived from MUTAGEN, VARIANT and VAR_SEQ in UniProt) and 6709 human N-glycans (≤50 sequence isomers per monosaccharide composition). We employed the site- and structure-specific N-glycoproteomics workflow utilizing intact N-glycopeptides search engine GPSeeker to identify GoG intact N-glycopeptides from parental breast cancer stem cells (MCF-7 CSCs) and adriamycin-resistant breast cancer stem cells (MCF-7/ADR CSCs).</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>With the criteria of spectrum-level false discovery rate control of ≤1%, we identified 87 and 94 GoG intact N-glycopeptides corresponding to 37 and 35 intact N-glycoproteins from MCF-7 CSCs and MCF-7/ADR CSCs, respectively. Micro-heterogeneity and macro-heterogeneity of N-glycosylation from GoG intact N-glycoproteins with VAR_SEQ and VARIANT were found in both MCF-7 CSCs and MCF-7/ADR CSCs systems.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The integration of site- and structure-specific N-glycoproteomics approach, conjugating with GoG characterization, provides a universal workflow for revealing comprehensive N-glycosite and N-glycan structure information of GoG. The analysis of mutation-originated GoG can be extended to GoG characterization of other N-glycoproteome systems including complex clinical tissues and body fluids.</p>\n </section>\n </div>","PeriodicalId":225,"journal":{"name":"Rapid Communications in Mass Spectrometry","volume":"38 17","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of mutation-originated gain-of-glycosylation using mass spectrometry-based N-glycoproteomics\",\"authors\":\"Hailun Yang,&nbsp;Zhixin Tian\",\"doi\":\"10.1002/rcm.9838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n <h3> Rationale</h3>\\n \\n <p>A general N-glycoproteomics analysis pipeline has been established for characterization of mutation-related gain-of-glycosylation (GoG) at intact N-glycopeptide molecular level, generating comprehensive site and structure information of N-glycosylation.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>This study focused on mutation-originated GoG using a mass spectrometry-based N-glycoproteomics analysis workflow. In brief, GoG intact N-glycopeptide databases were built, consisting of 2701 proteins (potential GoG N-glycosites and amino acids derived from MUTAGEN, VARIANT and VAR_SEQ in UniProt) and 6709 human N-glycans (≤50 sequence isomers per monosaccharide composition). We employed the site- and structure-specific N-glycoproteomics workflow utilizing intact N-glycopeptides search engine GPSeeker to identify GoG intact N-glycopeptides from parental breast cancer stem cells (MCF-7 CSCs) and adriamycin-resistant breast cancer stem cells (MCF-7/ADR CSCs).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>With the criteria of spectrum-level false discovery rate control of ≤1%, we identified 87 and 94 GoG intact N-glycopeptides corresponding to 37 and 35 intact N-glycoproteins from MCF-7 CSCs and MCF-7/ADR CSCs, respectively. Micro-heterogeneity and macro-heterogeneity of N-glycosylation from GoG intact N-glycoproteins with VAR_SEQ and VARIANT were found in both MCF-7 CSCs and MCF-7/ADR CSCs systems.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The integration of site- and structure-specific N-glycoproteomics approach, conjugating with GoG characterization, provides a universal workflow for revealing comprehensive N-glycosite and N-glycan structure information of GoG. The analysis of mutation-originated GoG can be extended to GoG characterization of other N-glycoproteome systems including complex clinical tissues and body fluids.</p>\\n </section>\\n </div>\",\"PeriodicalId\":225,\"journal\":{\"name\":\"Rapid Communications in Mass Spectrometry\",\"volume\":\"38 17\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rapid Communications in Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rcm.9838\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Communications in Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcm.9838","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

基本原理:已经建立了一个通用的N-糖蛋白组学分析流水线,用于在完整的N-糖肽分子水平表征突变相关的糖基化增益(GoG),生成全面的N-糖基化位点和结构信息:本研究采用基于质谱的 N-糖蛋白组学分析工作流程,重点研究突变引发的 GoG。简而言之,我们建立了由 2701 个蛋白质(从 UniProt 中的 MUTAGEN、VARIANT 和 VAR_SEQ 中提取的潜在 GoG N-糖基和氨基酸)和 6709 个人类 N-聚糖(每个单糖组成的序列异构体≤50 个)组成的 GoG 完整 N-糖肽数据库。我们利用完整N-糖肽搜索引擎GPSeeker的位点和结构特异性N-糖蛋白组学工作流程,从亲代乳腺癌干细胞(MCF-7 CSCs)和阿霉素抗性乳腺癌干细胞(MCF-7/ADR CSCs)中鉴定了GoG完整N-糖肽:以频谱级假发现率控制在≤1%为标准,我们分别从MCF-7 CSCs和MCF-7/ADR CSCs中鉴定出87个和94个GoG完整N-糖肽,对应37个和35个完整N-糖蛋白。在MCF-7造血干细胞和MCF-7/ADR造血干细胞系统中,发现VAR_SEQ和VARIANT与GoG完整N-糖蛋白的N-糖基化存在微异质性和大异质性:结论:位点和结构特异性 N-糖蛋白组学方法与 GoG 表征相结合,为揭示 GoG 的全面 N-糖复合体和 N-糖结构信息提供了通用的工作流程。对突变引起的GoG的分析可扩展到其他N-糖蛋白组系统(包括复杂的临床组织和体液)的GoG表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of mutation-originated gain-of-glycosylation using mass spectrometry-based N-glycoproteomics

Rationale

A general N-glycoproteomics analysis pipeline has been established for characterization of mutation-related gain-of-glycosylation (GoG) at intact N-glycopeptide molecular level, generating comprehensive site and structure information of N-glycosylation.

Methods

This study focused on mutation-originated GoG using a mass spectrometry-based N-glycoproteomics analysis workflow. In brief, GoG intact N-glycopeptide databases were built, consisting of 2701 proteins (potential GoG N-glycosites and amino acids derived from MUTAGEN, VARIANT and VAR_SEQ in UniProt) and 6709 human N-glycans (≤50 sequence isomers per monosaccharide composition). We employed the site- and structure-specific N-glycoproteomics workflow utilizing intact N-glycopeptides search engine GPSeeker to identify GoG intact N-glycopeptides from parental breast cancer stem cells (MCF-7 CSCs) and adriamycin-resistant breast cancer stem cells (MCF-7/ADR CSCs).

Results

With the criteria of spectrum-level false discovery rate control of ≤1%, we identified 87 and 94 GoG intact N-glycopeptides corresponding to 37 and 35 intact N-glycoproteins from MCF-7 CSCs and MCF-7/ADR CSCs, respectively. Micro-heterogeneity and macro-heterogeneity of N-glycosylation from GoG intact N-glycoproteins with VAR_SEQ and VARIANT were found in both MCF-7 CSCs and MCF-7/ADR CSCs systems.

Conclusions

The integration of site- and structure-specific N-glycoproteomics approach, conjugating with GoG characterization, provides a universal workflow for revealing comprehensive N-glycosite and N-glycan structure information of GoG. The analysis of mutation-originated GoG can be extended to GoG characterization of other N-glycoproteome systems including complex clinical tissues and body fluids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
5.00%
发文量
219
审稿时长
2.6 months
期刊介绍: Rapid Communications in Mass Spectrometry is a journal whose aim is the rapid publication of original research results and ideas on all aspects of the science of gas-phase ions; it covers all the associated scientific disciplines. There is no formal limit on paper length ("rapid" is not synonymous with "brief"), but papers should be of a length that is commensurate with the importance and complexity of the results being reported. Contributions may be theoretical or practical in nature; they may deal with methods, techniques and applications, or with the interpretation of results; they may cover any area in science that depends directly on measurements made upon gaseous ions or that is associated with such measurements.
期刊最新文献
Identification of the chemical constituents in the leaves and twigs of Nerium oleander by ultrahigh-performance liquid chromatography coupled to quadrupole Orbitrap high-resolution mass spectrometry. Investigation of the mechanism of [M–H]+ ion formation in photoionized N-alkyl-substituted thieno[3,4-c]-pyrrole-4,6-dione derivatives during higher order MSn high-resolution mass spectrometry Development and validation of a rapid HPLC-MS/MS method for simultaneous determination of cyclosporine A and tacrolimus in whole blood for routine therapeutic drug monitoring in organ transplantation The environmental and health protection commitments of Jean-François Muller: Academic and societal endeavor. A fragmentation study of disaccharide flavonoid C-glycosides using triple quadrupole mass spectrometry and its application for identification of flavonoid C-glycosides in Odontosoria chinensis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1