cGAS-ISG15-RAGE 轴重编头颈癌坏死微环境并促进淋巴转移。

IF 9.4 1区 医学 Q1 HEMATOLOGY Experimental Hematology & Oncology Pub Date : 2024-06-26 DOI:10.1186/s40164-024-00531-5
Jingyuan Li, Jun Tan, Tao Wang, Shan Yu, Guangliang Guo, Kan Li, Le Yang, Bin Zeng, Xueying Mei, Siyong Gao, Xiaomei Lao, Sien Zhang, Guiqing Liao, Yujie Liang
{"title":"cGAS-ISG15-RAGE 轴重编头颈癌坏死微环境并促进淋巴转移。","authors":"Jingyuan Li, Jun Tan, Tao Wang, Shan Yu, Guangliang Guo, Kan Li, Le Yang, Bin Zeng, Xueying Mei, Siyong Gao, Xiaomei Lao, Sien Zhang, Guiqing Liao, Yujie Liang","doi":"10.1186/s40164-024-00531-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cancer cells frequently evolve necroptotic resistance to overcome various survival stress during tumorigenesis. However, we have previously showed that necroptosis is widespread in head and neck squamous cell carcinoma (HNSCC) and contributes to tumor progression and poor survival via DAMPs-induced migration and invasiveness in peri-necroptotic tumor cells. This implicated an alternative strategy that cancers cope with necroptotic stress by reprogramming a pro-invasive necroptotic microenvironment (NME). Here, we aim to decipher how necroptotic cells shape the NME and affect HNSCC progression.</p><p><strong>Methods: </strong>Both our pre-established cellular necroptotic model and newly established Dox-induce intratumoral necroptosis model were used to investigate how necroptosis affect HNSCC progression. Transcriptomic alterations in peri-necroptotic tumor cells were analyzed by RNA-seq and validated in the NME in mice and patients' samples. The differential DAMPs compositon among apopotosis. Necrosis, and necroptosis were analyzed by label-free proteomic technique, and the necroptosis-specific DAMPs were then identified and validated. The potential receptor for ISG15 were simulated using molecular docking and further validated by in vitro assays. Then the ISG15-RAGE axis was blocked by either knockdown of necroptotic-ISG15 release and RAGE inhibitor FPS-ZM1, and the impact on tumor progression were tested. Last, we further tested our findings in a HNSCC-patients cohort.</p><p><strong>Results: </strong>Necroptosis played a crucial role in driving tumor-cell invasiveness and lymphatic metastasis via tumor-type dependent DAMPs-releasing. Mechanistically, necroptotic DAMPs induced peri-necroptotic EMT via NF-κB and STAT3 signaling. Furthermore, intrinsic orchestration between necroptotic and cGAS-STING signaling resulted in producing a group of interferon stimulated genes (ISGs) as HNSCC-dependent necroptotic DAMPs. Among them, ISG15 played an essential role in reprogramming the NME. We then identified RAGE as a novel receptor for extracellular ISG15. Either blockage of ISG15 release or ISG15-RAGE interaction dramatically impeded necroptosis-driven EMT and lymphatic metastasis in HNSCC. Lastly, clinicopathological analysis showed high ISG15 expression in NME. Extensive necroptosis and high tumor-cell RAGE expression correlated with tumor progression and poor survival of HNSCC patients.</p><p><strong>Conclusions: </strong>Our data revealed a previously unknown cGAS-ISG15-RAGE dependent reprogramming of the necroptotic microenvironment which converts the necroptotic stress into invasive force to foster HNSCC-cell dissemination. By demonstrating the programmatic production of ISG15 via necroptosis-cGAS orchestration and its downstream signaling through RAGE, we shed light on the unique role of ISG15 in HNSCC progression. Targeting such machineries may hold therapeutic potential for restoring intratumoral survival stress and preventing lymphatic metastasis in HNSCC.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":"13 1","pages":"63"},"PeriodicalIF":9.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200990/pdf/","citationCount":"0","resultStr":"{\"title\":\"cGAS-ISG15-RAGE axis reprogram necroptotic microenvironment and promote lymphatic metastasis in head and neck cancer.\",\"authors\":\"Jingyuan Li, Jun Tan, Tao Wang, Shan Yu, Guangliang Guo, Kan Li, Le Yang, Bin Zeng, Xueying Mei, Siyong Gao, Xiaomei Lao, Sien Zhang, Guiqing Liao, Yujie Liang\",\"doi\":\"10.1186/s40164-024-00531-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cancer cells frequently evolve necroptotic resistance to overcome various survival stress during tumorigenesis. However, we have previously showed that necroptosis is widespread in head and neck squamous cell carcinoma (HNSCC) and contributes to tumor progression and poor survival via DAMPs-induced migration and invasiveness in peri-necroptotic tumor cells. This implicated an alternative strategy that cancers cope with necroptotic stress by reprogramming a pro-invasive necroptotic microenvironment (NME). Here, we aim to decipher how necroptotic cells shape the NME and affect HNSCC progression.</p><p><strong>Methods: </strong>Both our pre-established cellular necroptotic model and newly established Dox-induce intratumoral necroptosis model were used to investigate how necroptosis affect HNSCC progression. Transcriptomic alterations in peri-necroptotic tumor cells were analyzed by RNA-seq and validated in the NME in mice and patients' samples. The differential DAMPs compositon among apopotosis. Necrosis, and necroptosis were analyzed by label-free proteomic technique, and the necroptosis-specific DAMPs were then identified and validated. The potential receptor for ISG15 were simulated using molecular docking and further validated by in vitro assays. Then the ISG15-RAGE axis was blocked by either knockdown of necroptotic-ISG15 release and RAGE inhibitor FPS-ZM1, and the impact on tumor progression were tested. Last, we further tested our findings in a HNSCC-patients cohort.</p><p><strong>Results: </strong>Necroptosis played a crucial role in driving tumor-cell invasiveness and lymphatic metastasis via tumor-type dependent DAMPs-releasing. Mechanistically, necroptotic DAMPs induced peri-necroptotic EMT via NF-κB and STAT3 signaling. Furthermore, intrinsic orchestration between necroptotic and cGAS-STING signaling resulted in producing a group of interferon stimulated genes (ISGs) as HNSCC-dependent necroptotic DAMPs. Among them, ISG15 played an essential role in reprogramming the NME. We then identified RAGE as a novel receptor for extracellular ISG15. Either blockage of ISG15 release or ISG15-RAGE interaction dramatically impeded necroptosis-driven EMT and lymphatic metastasis in HNSCC. Lastly, clinicopathological analysis showed high ISG15 expression in NME. Extensive necroptosis and high tumor-cell RAGE expression correlated with tumor progression and poor survival of HNSCC patients.</p><p><strong>Conclusions: </strong>Our data revealed a previously unknown cGAS-ISG15-RAGE dependent reprogramming of the necroptotic microenvironment which converts the necroptotic stress into invasive force to foster HNSCC-cell dissemination. By demonstrating the programmatic production of ISG15 via necroptosis-cGAS orchestration and its downstream signaling through RAGE, we shed light on the unique role of ISG15 in HNSCC progression. Targeting such machineries may hold therapeutic potential for restoring intratumoral survival stress and preventing lymphatic metastasis in HNSCC.</p>\",\"PeriodicalId\":12180,\"journal\":{\"name\":\"Experimental Hematology & Oncology\",\"volume\":\"13 1\",\"pages\":\"63\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200990/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Hematology & Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40164-024-00531-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-024-00531-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:在肿瘤发生过程中,癌细胞经常进化出坏死抵抗以克服各种生存压力。然而,我们之前研究表明,坏死在头颈部鳞状细胞癌(HNSCC)中广泛存在,并通过DAMPs诱导坏死周围肿瘤细胞的迁移和侵袭性导致肿瘤进展和生存率低下。这暗示了癌症通过重编程促侵袭性坏死微环境(NME)来应对坏死压力的另一种策略。在此,我们旨在破解坏死细胞如何塑造 NME 并影响 HNSCC 的进展:方法:我们利用已建立的细胞坏死模型和新建立的Dox诱导瘤内坏死模型来研究坏死如何影响HNSCC的进展。通过RNA-seq分析了坏死周围肿瘤细胞的转录组变化,并在小鼠和患者样本的NME中进行了验证。有丝分裂期、坏死期和坏死期的DAMPs组成不同。通过无标记蛋白质组学技术分析了坏死和坏死的DAMPs组成,并鉴定和验证了坏死特异性DAMPs。利用分子对接技术模拟了ISG15的潜在受体,并进一步通过体外实验进行了验证。然后,通过敲除坏死-ISG15释放和RAGE抑制剂FPS-ZM1阻断ISG15-RAGE轴,并测试其对肿瘤进展的影响。最后,我们在HNSCC患者队列中进一步检验了我们的发现:结果:坏死细胞通过肿瘤类型依赖性 DAMPs 释放在驱动肿瘤细胞侵袭性和淋巴转移方面发挥了关键作用。从机制上讲,坏死DAMPs通过NF-κB和STAT3信号转导诱导坏死周围EMT。此外,坏死信号和cGAS-STING信号之间的内在协调产生了一组干扰素刺激基因(ISGs),作为HNSCC依赖性坏死DAMPs。其中,ISG15 在重编程 NME 中发挥了重要作用。我们随后发现 RAGE 是细胞外 ISG15 的新型受体。无论是阻断ISG15的释放还是ISG15-RAGE的相互作用,都能显著阻碍坏死诱导的EMT和HNSCC的淋巴转移。最后,临床病理分析表明,ISG15在NME中高表达。广泛的坏死和肿瘤细胞RAGE的高表达与HNSCC患者的肿瘤进展和不良生存率相关:我们的数据揭示了一种之前未知的依赖于cGAS-ISG15-RAGE的坏死微环境重编程,这种重编程将坏死压力转化为侵袭力,从而促进HNSCC细胞的扩散。通过展示ISG15通过坏死-CGAS协调产生的程序性生产及其通过RAGE的下游信号传导,我们揭示了ISG15在HNSCC进展中的独特作用。以这种机制为靶点可能具有恢复瘤内生存压力和防止 HNSCC 淋巴转移的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
cGAS-ISG15-RAGE axis reprogram necroptotic microenvironment and promote lymphatic metastasis in head and neck cancer.

Background: Cancer cells frequently evolve necroptotic resistance to overcome various survival stress during tumorigenesis. However, we have previously showed that necroptosis is widespread in head and neck squamous cell carcinoma (HNSCC) and contributes to tumor progression and poor survival via DAMPs-induced migration and invasiveness in peri-necroptotic tumor cells. This implicated an alternative strategy that cancers cope with necroptotic stress by reprogramming a pro-invasive necroptotic microenvironment (NME). Here, we aim to decipher how necroptotic cells shape the NME and affect HNSCC progression.

Methods: Both our pre-established cellular necroptotic model and newly established Dox-induce intratumoral necroptosis model were used to investigate how necroptosis affect HNSCC progression. Transcriptomic alterations in peri-necroptotic tumor cells were analyzed by RNA-seq and validated in the NME in mice and patients' samples. The differential DAMPs compositon among apopotosis. Necrosis, and necroptosis were analyzed by label-free proteomic technique, and the necroptosis-specific DAMPs were then identified and validated. The potential receptor for ISG15 were simulated using molecular docking and further validated by in vitro assays. Then the ISG15-RAGE axis was blocked by either knockdown of necroptotic-ISG15 release and RAGE inhibitor FPS-ZM1, and the impact on tumor progression were tested. Last, we further tested our findings in a HNSCC-patients cohort.

Results: Necroptosis played a crucial role in driving tumor-cell invasiveness and lymphatic metastasis via tumor-type dependent DAMPs-releasing. Mechanistically, necroptotic DAMPs induced peri-necroptotic EMT via NF-κB and STAT3 signaling. Furthermore, intrinsic orchestration between necroptotic and cGAS-STING signaling resulted in producing a group of interferon stimulated genes (ISGs) as HNSCC-dependent necroptotic DAMPs. Among them, ISG15 played an essential role in reprogramming the NME. We then identified RAGE as a novel receptor for extracellular ISG15. Either blockage of ISG15 release or ISG15-RAGE interaction dramatically impeded necroptosis-driven EMT and lymphatic metastasis in HNSCC. Lastly, clinicopathological analysis showed high ISG15 expression in NME. Extensive necroptosis and high tumor-cell RAGE expression correlated with tumor progression and poor survival of HNSCC patients.

Conclusions: Our data revealed a previously unknown cGAS-ISG15-RAGE dependent reprogramming of the necroptotic microenvironment which converts the necroptotic stress into invasive force to foster HNSCC-cell dissemination. By demonstrating the programmatic production of ISG15 via necroptosis-cGAS orchestration and its downstream signaling through RAGE, we shed light on the unique role of ISG15 in HNSCC progression. Targeting such machineries may hold therapeutic potential for restoring intratumoral survival stress and preventing lymphatic metastasis in HNSCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
7.30%
发文量
97
审稿时长
6 weeks
期刊介绍: Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings. Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.
期刊最新文献
Telomeres, telomerase, and cancer: mechanisms, biomarkers, and therapeutics. Structural basis of FpGalNase and its combination with FpGalNAcDeAc for efficient A-to-O blood group conversion. Construction and characterization of chimeric FcγR T cells for universal T cell therapy. Combinatorial functionomics identifies HDAC6-dependent molecular vulnerability of radioresistant head and neck cancer. Biomechanics in the tumor microenvironment: from biological functions to potential clinical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1