In Wook Kim, Woo-Jae Park, Hye-Young Yun, Dong-Seok Kim
{"title":"甲磺酰基甲烷通过激活 Mel-Ab 细胞中的 JNK 促进黑色素生成。","authors":"In Wook Kim, Woo-Jae Park, Hye-Young Yun, Dong-Seok Kim","doi":"10.1111/ics.12988","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>Methylsulfonylmethane (MSM), which contains organic sulphur, has been used for a long time as a medicinal ingredient because of its benefits to human health. MSM is reported to be protective against certain skin disorders, but it is unknown whether it affects melanin synthesis. Therefore, in our current research, we examined the possibility of MSM controlling the production of melanin in Mel-Ab melanocytes.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>In Mel-Ab cells, melanin contents and tyrosinase activities were assessed and quantified. The expression of microphthalmia-associated transcription factor (MITF) and tyrosinase was evaluated using western blot analysis, while MSM-induced signalling pathways were investigated.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The MSM treatment significantly resulted in a dose-dependent increase in melanin production. Furthermore, MSM elevated melanin-related proteins, including MITF and tyrosinase. However, the rate-limiting enzyme of melanin production, tyrosinase, was not directly influenced by it. Therefore, we investigated potential melanogenesis-related signalling pathways that may have been triggered by MSM. Our findings showed that MSM did not influence the signalling pathways associated with glycogen synthase kinase 3β, cAMP response-element binding protein, extracellular signal-regulated kinase, or p38 mitogen-activated protein kinase. However, MSM phosphorylated c-Jun N-terminal kinases/stress-activated protein kinase (JNK/SAPK), which is known to induce melanogenesis. SP600125, a specific JNK inhibitor, inhibited MSM-induced melanogenesis.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Taken together, our study indicates that MSM induces melanin synthesis and may serve as a therapeutic option for hypopigmentary skin disorders such as vitiligo.</p>\n </section>\n </div>","PeriodicalId":13936,"journal":{"name":"International Journal of Cosmetic Science","volume":"46 6","pages":"918-926"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ics.12988","citationCount":"0","resultStr":"{\"title\":\"Methylsulfonylmethane promotes melanogenesis via activation of JNK in Mel-Ab cells\",\"authors\":\"In Wook Kim, Woo-Jae Park, Hye-Young Yun, Dong-Seok Kim\",\"doi\":\"10.1111/ics.12988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>Methylsulfonylmethane (MSM), which contains organic sulphur, has been used for a long time as a medicinal ingredient because of its benefits to human health. MSM is reported to be protective against certain skin disorders, but it is unknown whether it affects melanin synthesis. Therefore, in our current research, we examined the possibility of MSM controlling the production of melanin in Mel-Ab melanocytes.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>In Mel-Ab cells, melanin contents and tyrosinase activities were assessed and quantified. The expression of microphthalmia-associated transcription factor (MITF) and tyrosinase was evaluated using western blot analysis, while MSM-induced signalling pathways were investigated.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The MSM treatment significantly resulted in a dose-dependent increase in melanin production. Furthermore, MSM elevated melanin-related proteins, including MITF and tyrosinase. However, the rate-limiting enzyme of melanin production, tyrosinase, was not directly influenced by it. Therefore, we investigated potential melanogenesis-related signalling pathways that may have been triggered by MSM. Our findings showed that MSM did not influence the signalling pathways associated with glycogen synthase kinase 3β, cAMP response-element binding protein, extracellular signal-regulated kinase, or p38 mitogen-activated protein kinase. However, MSM phosphorylated c-Jun N-terminal kinases/stress-activated protein kinase (JNK/SAPK), which is known to induce melanogenesis. SP600125, a specific JNK inhibitor, inhibited MSM-induced melanogenesis.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Taken together, our study indicates that MSM induces melanin synthesis and may serve as a therapeutic option for hypopigmentary skin disorders such as vitiligo.</p>\\n </section>\\n </div>\",\"PeriodicalId\":13936,\"journal\":{\"name\":\"International Journal of Cosmetic Science\",\"volume\":\"46 6\",\"pages\":\"918-926\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ics.12988\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cosmetic Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ics.12988\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cosmetic Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ics.12988","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DERMATOLOGY","Score":null,"Total":0}
Methylsulfonylmethane promotes melanogenesis via activation of JNK in Mel-Ab cells
Objective
Methylsulfonylmethane (MSM), which contains organic sulphur, has been used for a long time as a medicinal ingredient because of its benefits to human health. MSM is reported to be protective against certain skin disorders, but it is unknown whether it affects melanin synthesis. Therefore, in our current research, we examined the possibility of MSM controlling the production of melanin in Mel-Ab melanocytes.
Methods
In Mel-Ab cells, melanin contents and tyrosinase activities were assessed and quantified. The expression of microphthalmia-associated transcription factor (MITF) and tyrosinase was evaluated using western blot analysis, while MSM-induced signalling pathways were investigated.
Results
The MSM treatment significantly resulted in a dose-dependent increase in melanin production. Furthermore, MSM elevated melanin-related proteins, including MITF and tyrosinase. However, the rate-limiting enzyme of melanin production, tyrosinase, was not directly influenced by it. Therefore, we investigated potential melanogenesis-related signalling pathways that may have been triggered by MSM. Our findings showed that MSM did not influence the signalling pathways associated with glycogen synthase kinase 3β, cAMP response-element binding protein, extracellular signal-regulated kinase, or p38 mitogen-activated protein kinase. However, MSM phosphorylated c-Jun N-terminal kinases/stress-activated protein kinase (JNK/SAPK), which is known to induce melanogenesis. SP600125, a specific JNK inhibitor, inhibited MSM-induced melanogenesis.
Conclusion
Taken together, our study indicates that MSM induces melanin synthesis and may serve as a therapeutic option for hypopigmentary skin disorders such as vitiligo.
期刊介绍:
The Journal publishes original refereed papers, review papers and correspondence in the fields of cosmetic research. It is read by practising cosmetic scientists and dermatologists, as well as specialists in more diverse disciplines that are developing new products which contact the skin, hair, nails or mucous membranes.
The aim of the Journal is to present current scientific research, both pure and applied, in: cosmetics, toiletries, perfumery and allied fields. Areas that are of particular interest include: studies in skin physiology and interactions with cosmetic ingredients, innovation in claim substantiation methods (in silico, in vitro, ex vivo, in vivo), human and in vitro safety testing of cosmetic ingredients and products, physical chemistry and technology of emulsion and dispersed systems, theory and application of surfactants, new developments in olfactive research, aerosol technology and selected aspects of analytical chemistry.