Martin Huecker, Craig Schutzman, Joshua French, Karim El-Kersh, Shahab Ghafghazi, Ravi Desai, Daniel Frick, Jarred Jeremy Thomas
{"title":"利用手机听诊建立射血分数和卒中容量的精确模型:前瞻性病例对照研究","authors":"Martin Huecker, Craig Schutzman, Joshua French, Karim El-Kersh, Shahab Ghafghazi, Ravi Desai, Daniel Frick, Jarred Jeremy Thomas","doi":"10.2196/57111","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Heart failure (HF) contributes greatly to morbidity, mortality, and health care costs worldwide. Hospital readmission rates are tracked closely and determine federal reimbursement dollars. No current modality or technology allows for accurate measurement of relevant HF parameters in ambulatory, rural, or underserved settings. This limits the use of telehealth to diagnose or monitor HF in ambulatory patients.</p><p><strong>Objective: </strong>This study describes a novel HF diagnostic technology using audio recordings from a standard mobile phone.</p><p><strong>Methods: </strong>This prospective study of acoustic microphone recordings enrolled convenience samples of patients from 2 different clinical sites in 2 separate areas of the United States. Recordings were obtained at the aortic (second intercostal) site with the patient sitting upright. The team used recordings to create predictive algorithms using physics-based (not neural networks) models. The analysis matched mobile phone acoustic data to ejection fraction (EF) and stroke volume (SV) as evaluated by echocardiograms. Using the physics-based approach to determine features eliminates the need for neural networks and overfitting strategies entirely, potentially offering advantages in data efficiency, model stability, regulatory visibility, and physical insightfulness.</p><p><strong>Results: </strong>Recordings were obtained from 113 participants. No recordings were excluded due to background noise or for any other reason. Participants had diverse racial backgrounds and body surface areas. Reliable echocardiogram data were available for EF from 113 patients and for SV from 65 patients. The mean age of the EF cohort was 66.3 (SD 13.3) years, with female patients comprising 38.3% (43/113) of the group. Using an EF cutoff of ≤40% versus >40%, the model (using 4 features) had an area under the receiver operating curve (AUROC) of 0.955, sensitivity of 0.952, specificity of 0.958, and accuracy of 0.956. The mean age of the SV cohort was 65.5 (SD 12.7) years, with female patients comprising 34% (38/65) of the group. Using a clinically relevant SV cutoff of <50 mL versus >50 mL, the model (using 3 features) had an AUROC of 0.922, sensitivity of 1.000, specificity of 0.844, and accuracy of 0.923. Acoustics frequencies associated with SV were observed to be higher than those associated with EF and, therefore, were less likely to pass through the tissue without distortion.</p><p><strong>Conclusions: </strong>This work describes the use of mobile phone auscultation recordings obtained with unaltered cellular microphones. The analysis reproduced the estimates of EF and SV with impressive accuracy. This technology will be further developed into a mobile app that could bring screening and monitoring of HF to several clinical settings, such as home or telehealth, rural, remote, and underserved areas across the globe. This would bring high-quality diagnostic methods to patients with HF using equipment they already own and in situations where no other diagnostic and monitoring options exist.</p>","PeriodicalId":14706,"journal":{"name":"JMIR Cardio","volume":"8 ","pages":"e57111"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237790/pdf/","citationCount":"0","resultStr":"{\"title\":\"Accurate Modeling of Ejection Fraction and Stroke Volume With Mobile Phone Auscultation: Prospective Case-Control Study.\",\"authors\":\"Martin Huecker, Craig Schutzman, Joshua French, Karim El-Kersh, Shahab Ghafghazi, Ravi Desai, Daniel Frick, Jarred Jeremy Thomas\",\"doi\":\"10.2196/57111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Heart failure (HF) contributes greatly to morbidity, mortality, and health care costs worldwide. Hospital readmission rates are tracked closely and determine federal reimbursement dollars. No current modality or technology allows for accurate measurement of relevant HF parameters in ambulatory, rural, or underserved settings. This limits the use of telehealth to diagnose or monitor HF in ambulatory patients.</p><p><strong>Objective: </strong>This study describes a novel HF diagnostic technology using audio recordings from a standard mobile phone.</p><p><strong>Methods: </strong>This prospective study of acoustic microphone recordings enrolled convenience samples of patients from 2 different clinical sites in 2 separate areas of the United States. Recordings were obtained at the aortic (second intercostal) site with the patient sitting upright. The team used recordings to create predictive algorithms using physics-based (not neural networks) models. The analysis matched mobile phone acoustic data to ejection fraction (EF) and stroke volume (SV) as evaluated by echocardiograms. Using the physics-based approach to determine features eliminates the need for neural networks and overfitting strategies entirely, potentially offering advantages in data efficiency, model stability, regulatory visibility, and physical insightfulness.</p><p><strong>Results: </strong>Recordings were obtained from 113 participants. No recordings were excluded due to background noise or for any other reason. Participants had diverse racial backgrounds and body surface areas. Reliable echocardiogram data were available for EF from 113 patients and for SV from 65 patients. The mean age of the EF cohort was 66.3 (SD 13.3) years, with female patients comprising 38.3% (43/113) of the group. Using an EF cutoff of ≤40% versus >40%, the model (using 4 features) had an area under the receiver operating curve (AUROC) of 0.955, sensitivity of 0.952, specificity of 0.958, and accuracy of 0.956. The mean age of the SV cohort was 65.5 (SD 12.7) years, with female patients comprising 34% (38/65) of the group. Using a clinically relevant SV cutoff of <50 mL versus >50 mL, the model (using 3 features) had an AUROC of 0.922, sensitivity of 1.000, specificity of 0.844, and accuracy of 0.923. Acoustics frequencies associated with SV were observed to be higher than those associated with EF and, therefore, were less likely to pass through the tissue without distortion.</p><p><strong>Conclusions: </strong>This work describes the use of mobile phone auscultation recordings obtained with unaltered cellular microphones. The analysis reproduced the estimates of EF and SV with impressive accuracy. This technology will be further developed into a mobile app that could bring screening and monitoring of HF to several clinical settings, such as home or telehealth, rural, remote, and underserved areas across the globe. This would bring high-quality diagnostic methods to patients with HF using equipment they already own and in situations where no other diagnostic and monitoring options exist.</p>\",\"PeriodicalId\":14706,\"journal\":{\"name\":\"JMIR Cardio\",\"volume\":\"8 \",\"pages\":\"e57111\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237790/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Cardio\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/57111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Cardio","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/57111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Accurate Modeling of Ejection Fraction and Stroke Volume With Mobile Phone Auscultation: Prospective Case-Control Study.
Background: Heart failure (HF) contributes greatly to morbidity, mortality, and health care costs worldwide. Hospital readmission rates are tracked closely and determine federal reimbursement dollars. No current modality or technology allows for accurate measurement of relevant HF parameters in ambulatory, rural, or underserved settings. This limits the use of telehealth to diagnose or monitor HF in ambulatory patients.
Objective: This study describes a novel HF diagnostic technology using audio recordings from a standard mobile phone.
Methods: This prospective study of acoustic microphone recordings enrolled convenience samples of patients from 2 different clinical sites in 2 separate areas of the United States. Recordings were obtained at the aortic (second intercostal) site with the patient sitting upright. The team used recordings to create predictive algorithms using physics-based (not neural networks) models. The analysis matched mobile phone acoustic data to ejection fraction (EF) and stroke volume (SV) as evaluated by echocardiograms. Using the physics-based approach to determine features eliminates the need for neural networks and overfitting strategies entirely, potentially offering advantages in data efficiency, model stability, regulatory visibility, and physical insightfulness.
Results: Recordings were obtained from 113 participants. No recordings were excluded due to background noise or for any other reason. Participants had diverse racial backgrounds and body surface areas. Reliable echocardiogram data were available for EF from 113 patients and for SV from 65 patients. The mean age of the EF cohort was 66.3 (SD 13.3) years, with female patients comprising 38.3% (43/113) of the group. Using an EF cutoff of ≤40% versus >40%, the model (using 4 features) had an area under the receiver operating curve (AUROC) of 0.955, sensitivity of 0.952, specificity of 0.958, and accuracy of 0.956. The mean age of the SV cohort was 65.5 (SD 12.7) years, with female patients comprising 34% (38/65) of the group. Using a clinically relevant SV cutoff of <50 mL versus >50 mL, the model (using 3 features) had an AUROC of 0.922, sensitivity of 1.000, specificity of 0.844, and accuracy of 0.923. Acoustics frequencies associated with SV were observed to be higher than those associated with EF and, therefore, were less likely to pass through the tissue without distortion.
Conclusions: This work describes the use of mobile phone auscultation recordings obtained with unaltered cellular microphones. The analysis reproduced the estimates of EF and SV with impressive accuracy. This technology will be further developed into a mobile app that could bring screening and monitoring of HF to several clinical settings, such as home or telehealth, rural, remote, and underserved areas across the globe. This would bring high-quality diagnostic methods to patients with HF using equipment they already own and in situations where no other diagnostic and monitoring options exist.