{"title":"基于客观检测的老年人下肢运动功能定量评估的元分析。","authors":"Wen Liu, Jinzhu Bai","doi":"10.1186/s12984-024-01409-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To avoid deviation caused by the traditional scale method, the present study explored the accuracy, advantages, and disadvantages of different objective detection methods in evaluating lower extremity motor function in elderly individuals.</p><p><strong>Methods: </strong>Studies on lower extremity motor function assessment in elderly individuals published in the PubMed, Web of Science, Cochrane Library and EMBASE databases in the past five years were searched. The methodological quality of the included trials was assessed using RevMan 5.4.1 and Stata, followed by statistical analyses.</p><p><strong>Results: </strong>In total, 19 randomized controlled trials with a total of 2626 participants, were included. The results of the meta-analysis showed that inertial measurement units (IMUs), motion sensors, 3D motion capture systems, and observational gait analysis had statistical significance in evaluating the changes in step velocity and step length of lower extremity movement in elderly individuals (P < 0.00001), which can be used as a standardized basis for the assessment of motor function in elderly individuals. Subgroup analysis showed that there was significant heterogeneity in the assessment of step velocity [SMD=-0.98, 95%CI(-1.23, -0.72), I<sup>2</sup> = 91.3%, P < 0.00001] and step length [SMD=-1.40, 95%CI(-1.77, -1.02), I<sup>2</sup> = 86.4%, P < 0.00001] in elderly individuals. However, the sensors (I<sup>2</sup> = 9%, I<sup>2</sup> = 0%) and 3D motion capture systems (I<sup>2</sup> = 0%) showed low heterogeneity in terms of step velocity and step length. The sensitivity analysis and publication bias test demonstrated that the results were stable and reliable.</p><p><strong>Conclusion: </strong>observational gait analysis, motion sensors, 3D motion capture systems, and IMUs, as evaluation means, play a certain role in evaluating the characteristic parameters of step velocity and step length in lower extremity motor function of elderly individuals, which has good accuracy and clinical value in preventing motor injury. However, the high heterogeneity of observational gait analysis and IMUs suggested that different evaluation methods use different calculation formulas and indicators, resulting in the failure to obtain standardized indicators in clinical applications. Thus, multimodal quantitative evaluation should be integrated.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"21 1","pages":"111"},"PeriodicalIF":5.2000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11202321/pdf/","citationCount":"0","resultStr":"{\"title\":\"Meta-analysis of the quantitative assessment of lower extremity motor function in elderly individuals based on objective detection.\",\"authors\":\"Wen Liu, Jinzhu Bai\",\"doi\":\"10.1186/s12984-024-01409-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To avoid deviation caused by the traditional scale method, the present study explored the accuracy, advantages, and disadvantages of different objective detection methods in evaluating lower extremity motor function in elderly individuals.</p><p><strong>Methods: </strong>Studies on lower extremity motor function assessment in elderly individuals published in the PubMed, Web of Science, Cochrane Library and EMBASE databases in the past five years were searched. The methodological quality of the included trials was assessed using RevMan 5.4.1 and Stata, followed by statistical analyses.</p><p><strong>Results: </strong>In total, 19 randomized controlled trials with a total of 2626 participants, were included. The results of the meta-analysis showed that inertial measurement units (IMUs), motion sensors, 3D motion capture systems, and observational gait analysis had statistical significance in evaluating the changes in step velocity and step length of lower extremity movement in elderly individuals (P < 0.00001), which can be used as a standardized basis for the assessment of motor function in elderly individuals. Subgroup analysis showed that there was significant heterogeneity in the assessment of step velocity [SMD=-0.98, 95%CI(-1.23, -0.72), I<sup>2</sup> = 91.3%, P < 0.00001] and step length [SMD=-1.40, 95%CI(-1.77, -1.02), I<sup>2</sup> = 86.4%, P < 0.00001] in elderly individuals. However, the sensors (I<sup>2</sup> = 9%, I<sup>2</sup> = 0%) and 3D motion capture systems (I<sup>2</sup> = 0%) showed low heterogeneity in terms of step velocity and step length. The sensitivity analysis and publication bias test demonstrated that the results were stable and reliable.</p><p><strong>Conclusion: </strong>observational gait analysis, motion sensors, 3D motion capture systems, and IMUs, as evaluation means, play a certain role in evaluating the characteristic parameters of step velocity and step length in lower extremity motor function of elderly individuals, which has good accuracy and clinical value in preventing motor injury. However, the high heterogeneity of observational gait analysis and IMUs suggested that different evaluation methods use different calculation formulas and indicators, resulting in the failure to obtain standardized indicators in clinical applications. Thus, multimodal quantitative evaluation should be integrated.</p>\",\"PeriodicalId\":16384,\"journal\":{\"name\":\"Journal of NeuroEngineering and Rehabilitation\",\"volume\":\"21 1\",\"pages\":\"111\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11202321/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of NeuroEngineering and Rehabilitation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12984-024-01409-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-024-01409-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Meta-analysis of the quantitative assessment of lower extremity motor function in elderly individuals based on objective detection.
Objective: To avoid deviation caused by the traditional scale method, the present study explored the accuracy, advantages, and disadvantages of different objective detection methods in evaluating lower extremity motor function in elderly individuals.
Methods: Studies on lower extremity motor function assessment in elderly individuals published in the PubMed, Web of Science, Cochrane Library and EMBASE databases in the past five years were searched. The methodological quality of the included trials was assessed using RevMan 5.4.1 and Stata, followed by statistical analyses.
Results: In total, 19 randomized controlled trials with a total of 2626 participants, were included. The results of the meta-analysis showed that inertial measurement units (IMUs), motion sensors, 3D motion capture systems, and observational gait analysis had statistical significance in evaluating the changes in step velocity and step length of lower extremity movement in elderly individuals (P < 0.00001), which can be used as a standardized basis for the assessment of motor function in elderly individuals. Subgroup analysis showed that there was significant heterogeneity in the assessment of step velocity [SMD=-0.98, 95%CI(-1.23, -0.72), I2 = 91.3%, P < 0.00001] and step length [SMD=-1.40, 95%CI(-1.77, -1.02), I2 = 86.4%, P < 0.00001] in elderly individuals. However, the sensors (I2 = 9%, I2 = 0%) and 3D motion capture systems (I2 = 0%) showed low heterogeneity in terms of step velocity and step length. The sensitivity analysis and publication bias test demonstrated that the results were stable and reliable.
Conclusion: observational gait analysis, motion sensors, 3D motion capture systems, and IMUs, as evaluation means, play a certain role in evaluating the characteristic parameters of step velocity and step length in lower extremity motor function of elderly individuals, which has good accuracy and clinical value in preventing motor injury. However, the high heterogeneity of observational gait analysis and IMUs suggested that different evaluation methods use different calculation formulas and indicators, resulting in the failure to obtain standardized indicators in clinical applications. Thus, multimodal quantitative evaluation should be integrated.
期刊介绍:
Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.